Chasing large climate model uncertainties: Aligning experimental and model perspectives on atmospheric nanoparticle growth

Experiments:

Limited experimental understanding of nanoparticle growth processes in the atmosphere:

- Wide range of vapors (up to 10000 organic molecules with unknown vapor pressures) and processes (condensation, chemical reactions and collective phenomena) potentially contributing to nanoparticle growth
- State-of-the-art box models can fail to predict nanoparticle growth rates from gas-phase measurements of condensable vapors
- Observations show little variation in growth rates, while condensable vapor concentrations span 3 orders of magnitude

Environmental Impact:

13 CLIMATE ACTION

SUSTAINABLE CITIES AND COMMUNITIES

Cloud Condensation Nuclei & Particulate Matter Pollution

TECHNISCHE

UNIVERSITÄT

CCN

WIEN

Atmospheric processing:

Chemical production of low volatility molecules

Phase transition – New Particle Formation: Nucleation and Clustering needs to be followed by fast nanoparticle growth

Large-scale models:

Over-simplifications are responsible for too low secondary organic aerosol levels in air quality models and too low sensitivity in global climate models:

- Comparison of 4 Earth System Models from CMIP6 show little sensitivity of CCN to the inclusion of organics in growth
- Single particle growth is assumed in the models using a limited subset of condensable vapors only: Low NPF over oceans buffers global effect
- Aerosol dynamics schemes are highly-simplified and apparently do not reproduce atmospheric nanoparticle growth: Inclusion of a sectional scheme for growth changes CCN by more than 30%

single-particle growth model

and simplified dynamics

limited subset of condensable vapors OsloAeroSec: $\mu = -3.3\%$

low sensitivity of CCN to growth

Volatile gases are emitted from the bio- and anthroposphere

WWTF

D. Stolzenburg^{1,2}, R. Cai^{2,3}, S.M. Blichner⁴, J. Kontkanen^{2,5}, P. Zhou², R. Makkonen^{2,6}, V.-M. Kerminen², M. Kulmala², I. Riipinen⁴, and J. Kangasluoma²

¹ TU Wien, Institute for Materials Chemistry, Vienna, Austria, ² University of Helsinki, Institute for Atmospheric and Earth System Science, Helsinki, Finland, ³Fudan University, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai, China, ⁴Stockholm University, Department of Environmental Science (ACES), Stockholm, Sweden, ⁵ CSC – IT Center for Science, Espoo, Finland, ⁶ Finnish Meteorological Institute, Helsinki, Finland

"Atmospheric nanoparticle growth", Rev. Mod. Phys. 95, 045002

