

Austria's Climate Neutrality: An In-depth Evaluation of the Potential Contribution of CCU and CCS for the Austrian Long-term **Climate Goals** Duration: 8/22 - 1/25

Motivation

The EU aims for climate neutrality by 2050, Austria even targets 2040.

CO₂ emissions have to be reduced **but** certain emissions will remain from hard-toabate industries.

Carbon is an important resource for various sectors (e.g., chemical & down-stream industries).

→ CO₂ Capture and Utilization (CCU) and **Storage (CCS)** are an opportunity for a Circular Carbon Economy and to reach climate change mitigation goals.

Research questions:

- ✤ Austrian CO₂ emission now and 2050?
- Domestic sinks: industry & storage?
- Legal & regulatory aspects?
- Economic & environmental feasibility?
- Stakeholder perspectives?
- Viable "Source-to-sink" routes?

Project Structure

AP1 Project Management **AP2** Technical Resources Scenario-based evaluation of today's point sources and their development

CO₂ capture technologies

Evaluation of technologies & characteristics feasible for capturing from identified sources

	<i>a)</i>	Technology	Energy demand _(th) GJ/t _{CO2}
Fig. 2. Overview of carbon capture technologies a) energy demand b) cost ranges	A	osorption	2,0 - 9,2
		MEA, DEA, MDEA, etc.	3,0 - 4,5
		등 New/optimised solvents	2,1 - 2,9
		Potassium carbonate	2,0 - 2,6
		တီ Chilled ammonia	2.0 - 2.9
	Amino acid-based solvent Adsorption Amine-based adsorbents Metal-organic frameworks	Amino acid-based solvent	2.4 - 3.4
		2.4 - 9,0	
		Amine-based adsorbents	1,3 - 2,0
		Metal-organic frameworks	0,4 - 0,8
	Membrane		0,5 - 6,0
	Cryogenic		2,4 - 5,2
	So	olid Looping	2,0 - 10,0

CO₂ Emissions [kt]

Identification of potential storage formations and corresponding capacities

Techno-economic & ecological impact

Capture efforts and prioritization of sources

Costs of individual utilization & storage

& Demand Potential for CCU

AP3 Geological CO₂

Storage Potential in Austria **AP4** Impact Assessment

AP5 Stakeholder Involvement & Policy Recommendations

Methods

AP6 Communication & Dissemination

Literature reviews

- Legal & regulatory assessments
- Bottom-up/top-down potential analysis
- Techno-economic evaluation
- Interviews, surveys, workshops

Outlook

Finalization CCU/CCS use-cases Techno-economic assessment ongoing

CO₂ sinks: utilization & storage options

- Chemical industry: methanol, olefines, fertilizers, melamine etc.
- E-fuels: methane, kerosene etc.

process chain

Stakeholder involvement

- CC, CCU, CCS online survey with 10 Austrian high-emitting corporations
- Workshop on insights in March 2023
- 1-on-1 interviews to deep-dive into drivers, obstacles and necessities
- Workshop on preliminary results in Q3/2024

Legal and policy aspects

- \clubsuit CCS forbidden in Austria \rightarrow repeal of the ban under discussion
- EU ETS: no certificates for CCS, and for CCU where the CO_2 is permanently chemically bound in a product National Carbon Management Strategy for data-driven and cost-effective management of GHG capture, storage, transport and use

Environmental considerations ongoing Further stakeholder interaction Finalization of legal analysis and development of policy recommendations Communication & dissemination of results

Dieses Projekt wird aus Mitteln des Klima- und Energiefonds gefördert und im Rahmen des Programms "ACRP 14th call" durchgeführt.