

AUSTRIA'S CLIMATE NEUTRALITY: AN IN-DEPTH EVALUATION OF THE POTENTIAL CONTRIBUTION OF CCU AND CCS FOR THE AUSTRIAN LONG-TERM CLIMATE GOALS

ACRP-SESSION 1 / AUSTRIAN CLIMATE DAY 2024 / 03.04.2024 VALERIE RODIN, <u>HANS BÖHM</u> / ENERGIEINSTITUT AN DER JKU LINZ

- Lead: Energieinstitut an der JKU Linz (EI-JKU)
- Consortium: Montanuniversität Leoben (MUL) (Energy Network Technology / Process Technology and Environmental Protection / Reservoir Engineering / Petroleum Geology), denkstatt, CCCA (subcontract)
- Funding scheme: 14th Austrian Climate Research Programme (ACRP)
- Duration: August 2022 January 2025 (30 Months)

"In the scenarios for meeting the 1.5°C target, Carbon Capture and Storage (CCS) or Carbon Capture and Utilization (CCU) is de facto unavoidable" (see IPCC Special Report on 1.5°C).

→ CaCTUS addresses the lack of reliable data and information on the potential of these technologies in Austria

Objectives

• Identification and quantification of technical potentials for CCU/CCS in Austria

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

AFFORDABLE AND Clean Energy

- Identification of source-specific climate impacts and sinkrelated net mitigation potentials of CCU/CCS
- **Techno-economic assessment** of the identified carbon pathways and their **contribution to climate neutrality**
- Assessment of **current barriers and regulatory shortcomings** that hinder early implementation and maximize impact

powered by

13 CLIMATE ACTION

12 RESPONSIBLE CONSUMPTION

AND PRODUCTION

Carbon Capture – Energy Demand & Costs (WP2)

	Technology	Energy demand _(th) GJ/t _{CO2}	
Absorption		2,0 - 9,2	
Selection	MEA, DEA, MDEA, etc.	3,0 - 4,5	
	New/optimised solvents	2,1 - 2,9	
	Potassium carbonate	2,0 - 2,6	÷/J
	Chilled ammonia	2.0 - 2.9	4040
	Amino acid-based solvent	2.4 - 3.4	ć
Adsorption		2.4 - 9,0	
	Amine-based adsorbents	1,3 - 2,0	
	Metal-organic frameworks	0,4 - 0,8	
Membrane		0,5 - 6,0	
Cryogenic		2,4 - 5,2	
Solid Looping		2,0 - 10,0	

→ CCCA fact sheet on Carbon Capture Technologies in press!
→ Several conference presentations in Q4/23 and Q1/24

CO₂ point sources and sinks in 2050 (WP2 / WP3)

3 decarbonization pathways based on NEFI and UBA scenarios

 \rightarrow Journal article on CO₂ sinks in preparation

 \rightarrow Several conference presentations in Q4/23 and Q1/24

powered by

Quantification of CCUS potentials and demands (WP2)

Identification of relevant products and demands – carbon balance

- total "emissions": 17.3 capturable: 14.5 o fossil/geogenic: 4.0 4
 - **17.3 27.3** Mt/yr **14.5 – 23.2** Mt/yr **4.0 – 4.6** Mt/yr

- utilizable CO₂*:
 - circular:

- **3.3 15.4** Mt/yr **0.5 – 11.2** Mt/yr
- * if all e-fuels produced in AT; upper bounds without exploiting biogas potentials
- Contact to other ACRP projects
- → NetZero2040
- > Prof. K. Steininger/Wegener Center (e.g. FAREcarbon project)
- → Contact planned regarding nature-based solutions (e.g. UNRAVEL / BOKU)

Assessment of CO₂ avoidance costs for the identified CCU/CCS paths (WP4)

Determination of capture effort and merit of sources

- high-purity CO₂ streams will not suffice to compensate long-term fossil/geogenic emissions
- depending on exploited CCU potentials, the use of highly diluted sources will become necessary

to be considered:

- omitting potentials from biogas production shifts the curve towards higher efforts
- with higher carbon demands, decentralization of sources increases
- additional efforts for transport, purification, etc. yet to be included

Capturable carbon

Analysis of the legal and regulatory framework on CCU and CCS (WP4)

•Legal situation regarding CCU and CCS strongly influenced by **EU law**

- Main legal basis at European level regarding CCS: Directive 2009/31/EG on the geological storage of carbon dioxide (CCS-Directive)
 - Outline and analysis of the provisions of the CCS-Directive
 - Right not to allow any storage in the Member State → Austria has made use of this: Federal Act on the Prohibition of Geological Storage of Carbon Dioxide
 - Evaluation of the ban at regular intervals; next evaluation upcoming: presentation to the Council of Ministers (AT, Ministerrat) that it will probably be recommended that geological storage of CO₂ be permitted exclusively for residual emissions in "hard-to-abate" sectors
 - Analysis of the conditions for an exemption from the obligation to surrender allowances in the EU ETS in connection with CCU and CCS
 - Exemption for CCS as defined by the CCS Directive
 - Exception regarding CCU only if CO₂ is permanently chemically bound in products

→ Presented in January 2024 (Energierechtstagung an der JKU Linz)

Stakeholder interaction (WP5)

- Stakeholder WS in Q2/23
- Survey on CC / CCU / CCS
 - General information
 - CCUS Potentials
 - CCUS Barriers and Opportunities
 - Activities in the area of <u>carbon capture</u>
 - Activities in the area of carbon storage
 - Activities in the area of <u>carbon utilisation</u>
- Interviews in Q4/23 + Q1/24 •
 - Necessary advancements in the company
 - Regulations
 - Subsidies
 - Technical criteria
- Stakeholder WS in Q3/24

Technical

Amine and membrane technologies receive highest interest for CC

Chemical-catalytic methods appear most promising for CCU implementation

Depleted oil and gas reservoir storage receives most interest for CCS

- \rightarrow Work in progress!
- Policy Briefs planned for the final project period
- Project partners are in contact with policy makers,
- e.g. via Carbon Management Strategy Development for Austria by BMK & BMF

Barriers

CCU: Financial burden and lack of enabling instruments

CCS: Legislative restrictions, lack of political will and negative public perception

Drivers

CCU: Updated ETS regulation and improved profitability

CCS: impact towards climate targets, reduced costs and updated ETS regulation

Contact

Consortium Lead

Energieinstitut an der JKU Linz

www.energieinstitut-linz.at

Homepage

https://project-cactus.at/

Valerie Rodin

<u>rodin@energieinstitut-linz.at</u> +43 (0) 732 / 2468-5671

https://denkstatt.eu

https://ccca.ac.at

03.04.2024