The Crux with Reducing Emissions in the Long-term:

The underestimated “now” versus the overestimated “then”

A perspective on research still to be done

M. JONAS & P. Żebrowski

International Institute for Applied Systems Analysis
Laxenburg, Austria

19th Austrian Climate Colloquium, Salzburg, Austria; 25 March 2018
Motivation:

Unlikely for a system with memory!

Then, how informative is this BaU scenario?
What are we after?

…the Explainable Outreach (EO) → not prediction!!!
What are we after?

In the focus:
- Systems with memory
 - Forced systems
 - Persistence
 - Explainable outreach …

Not in the focus:
- Prediction (in-sample and out-of-sample)
 - Perfect forecasting
 - Bias-variance tradeoff
 - Signal detection …
We will proceed by explaining

1. momentum and the change in momentum
2. how we introduce memory taking a DP approach
3. how our example works in principle
4. our methodological approach
5. our results
6. our take-home messages

This research evolved from the project “Prognostic Uncertainty” carried out under the 2013 ESS Call of the Austrian Academy of Sciences
1. Momentum and change in momentum:

We are interested in the data series’ momentum (“amount of movement”):

\[p = m \, v \]

\[I = \overrightarrow{F} \, \Delta t = m \, \frac{\Delta \overrightarrow{v}}{\Delta t} = m \, \Delta \overrightarrow{v} = \Delta \overrightarrow{p} \]

- \(p_1 < p_2 \)
- \(m_1 < m_2 \)
- \(v_1 = v_2 \)

<table>
<thead>
<tr>
<th>German</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>Impuls</td>
<td>Momentum</td>
</tr>
<tr>
<td>Kraftstoß</td>
<td>Impulse</td>
</tr>
<tr>
<td>Conservative: No external impulse, no change in momentum</td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
</tr>
<tr>
<td>Drehimpuls</td>
<td>Angular momentum</td>
</tr>
<tr>
<td>Drehmomentstoß</td>
<td>Angular impulse</td>
</tr>
<tr>
<td>Additive: Momentum and angular momentum add up</td>
<td></td>
</tr>
</tbody>
</table>
1. Change in momentum:

\[
\left(\frac{\Delta p}{\Delta t} \right)_m = m \frac{\Delta v}{\Delta t}
\]

\[
\left(\frac{\Delta p}{\Delta t} \right)_v = v \frac{\Delta m}{\Delta t}
\]

Parcel of CO₂ (mass)
- Travelling, per time step, from atm to atm
- Already gaseous occupying the volume of 1x atm

It is this world where we want to introduce memory!
2. Introducing memory taking a DP approach:

\[
\text{Emissions} = \frac{\text{Emissions}}{\text{Furnace}} \ast \frac{\text{Furnaces}}{\text{Capita}} \ast \text{Capita}
\]

- technological state-of-the-art
- technological endowment at per-capita level
- forcing

Contribution to emissions today

Uncertainty of these contributions

Uncertainty

Weight

past

extent

Age of Furnace

today

Quality of knowledge

good

bad

great unc

small unc

cut-off

Jonas et al. (2018)
2. Introducing memory taking a DP approach:

![Graph of emissions](image)

- **Emissions**
- **Total emissions**
- **Emissions of new furnaces**

Today (6)
2. Introducing memory taking a DP approach:

Emissions

Total emissions

Emissions of old furnaces

Emissions of new furnaces

today

1 2 3 4 5 6 8 9 10
2. Introducing memory taking a DP approach:

What we do not need to do:
To take a detailed (prospective) modeling approach to understand how well the emissions system remembers its antecedent development!

What we can possibly do instead:
To take a curve-fitting (retrospective) data-driven approach to identify a suitable “memory model” consisting of as few parameters as possible to capture memory in the series of observations/estimates of emissions, while involving only current data at each point in time.
3. How our example works in principle:

Observer #1: \(y_{Q S} \)
- Forcing (no memory)

Observer #3: \(y_{Q_{SWN}} \)

Observer #2: \(y_{QS_{WM}} \)
- Averaged reality

Observer #4: \(y_{Q_{SWN}_{WM}} \)
- Particular reality
3. How our example works in principle:

We assume that we can observe the historical part of the “world of observer #4” only by way of linear regression, at best.

We then ask how often does $Y_{QSWN WM}$ (red regression) fall within the (in- and out-of-sample) confidence band of our linear regression for a time that corresponds to 2x the extent of memory?
5. Looking ahead – our results in principle:

y_{QswN_wM}

- past
- future
- particular reality of Observer #4

R^2 high
5. Looking ahead – our results in principle:

- R^2_{high}
- R^2_{low}

Particular reality of Observer #4

Past	Future
6. Our take-home messages so far:

1. We have reasons for optimism that the system’s EO can be derived under both incomplete knowledge of memory and imperfect understanding of how the system is forced. We also learn that we can derive a robust EO if we resist attempting to describe the world we perceive too precisely.

2. We are confronted with the challenge of acquiring a deeper systemic understanding to substantiate how memory plays out over time (exponentially, as in our example, or otherwise). It remains to be seen whether meeting that inversion challenge is feasible. We think that it can be mastered.

Jonas et al. (2017, 2018)
6. Our take-home messages so far:

3. Our insights so far indicate the high chance of our conjecture proving true:

Being ignorant of memory and persistence, we underestimate, probably to a considerable extent, the momentum with which GHG emissions will continue on their historical path beyond today and thus over-estimate the reductions that we might achieve in the future.

Confer the latter two references for background literature as well as: