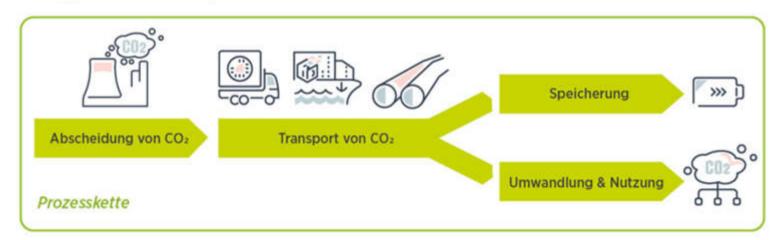


Carbon Capture and Utilization (CCU)

Univ.-Prof. Dipl.-Ing. Dr.-Ing. Markus Lehner Univ.-Prof. Dipl.-Ing. Dr.techn. Thomas Kienberger

WO AUS FORSCHUNG ZUKUNFT WIRD

Lehrstuhl für Verfahrenstechnik des industriellen Umweltschutzes Lehrstuhl für Energieverbundtechnik


Begriffsbestimmungen

Carbon Capture and Utilization (CCU)

- CCU ist die Nutzung von CO₂ in konzentrierter Form für die Herstellung von kohlenstoffhaltigen Produkten in chemischen und technischen biologischen Prozessen
- In einem erweiterten Sinn können aber auch natürliche biologische Prozesse (z.B. Aufforstung) mit einbezogen werden.

Carbon Capture and Storage (CCS)

 CCS ist die möglichst dauerhafte, langfristige Speicherung von CO₂ in geologischen Formationen, wie (ehemaligen) Lagerstätten von Erdgas, Kohle, Erdöl, oder tiefen Aquiferen oder umgewandelt als Karbonate (CCU+S)

Chancen von CCU Technologien

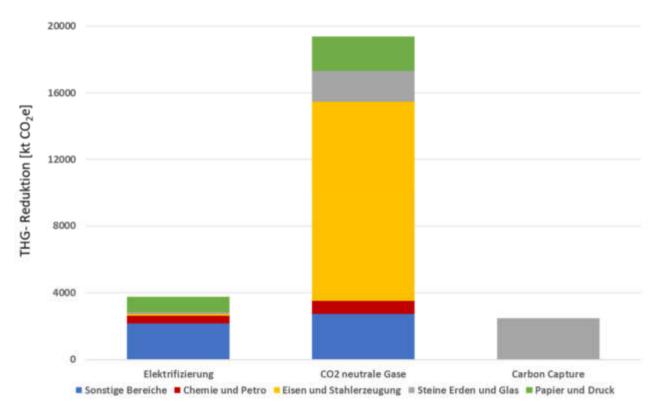
- CCU kann einen wirtschaftlichen Kohlenstoffrohstoff bereitstellen, der andere, teurere, fossile teilweise oder vollständig ersetzt.
- CCU kann Türen zu neuen Synthesewegen für bestehende Produkte oder für neue Produkte öffnen und dadurch neue Märkte erschließen. CCU kann die Komplexität chemischer Reaktionswege reduzieren.
- CCU kann Lösungen bieten für nachhaltige Chemikalien, Brennstoffe, Werkstoffe, Abfallbehandlung und fördert die Eindämmung von industriellen CO₂-Emissionen.
- CCU kann erneuerbaren Strom in den Chemie- und Verkehrssektor integrieren und so industrielle Symbiose und Kreislaufwirtschaft ermöglichen.
- CCU kann die Prozesseffizienz steigern und die Inputpreisvolatilität verringern.
- CCU kann potenziell Umweltauswirkungen über den Klimawandel hinaus reduzieren, wie bereits für CO₂-basierte Kraftstoffe gezeigt wurde, welche die NOx- und Rußemissionen reduzieren.
- CCU-Technologien können sogar CO₂-negativ sein, wenn sie mit CO₂-Sequestrierung kombiniert oder integriert werden (z.B. durch Karbonatisierung).

Herausforderungen von CCU-Technologien

- Die überwiegende Mehrheit der CCU-Prozesse hat einen hohen Energiebedarf oder erfordert "hochenergetische" Reaktionspartner, welche die Betriebskosten und die Umweltauswirkungen erhöhen (können).
- CCU-Prozesse erfordern oft neue Anlagen, viele beinhalten Hochdruckprozesse, wodurch die Kapitalkosten (Investitionen) hoch sind.
- CCU konzentriert sich hauptsächlich auf margenschwache, großvolumige Industriemärkte, wodurch der Return of Investment von erheblichen Investitionen erschwert ist.
- CCU fokussiert sich derzeit auf die Chemie-, Kraftstoff- und Werkstoffindustrie, die durch hohe Kosten für die Anpassung bestehender Prozesse und sehr langsame Produktanpassungsraten (langsame Marktaufnahme) gekennzeichnet sind.
- Die Reduzierung von Umweltauswirkungen ist ein wichtiges Kriterium für die Kommerzialisierung von CCU. Wenn eine CCU-Technologie die Umweltauswirkungen gegenüber etablierten Prozessen nicht reduzieren kann, ist eine erfolgreiche Kommerzialisierung als Maßnahme zur Emissionsminderung unwahrscheinlich.

Prozesspfade zur CO₂ Nutzung

Technologiepfad	Potentielle Produkte	Attribute	TRL
Chemisch	Chemikalien, Werkstoffe, Treibstoffe	Erfordert geeignete Katalysatoren	2 – 5
Elektro- und photochemisch	Chemikalien, Werkstoffe, Treibstoffe	Nutzung von erneuerbaren Strom	1 – 4
Karbonisierung	Karbonate (potentiell: Baustoffe)	Langfristige Bindung, Gesamt CO ₂ -Bilanz!	5 – 9
Biologisch	Chemikalien und Treibstoffe	Langsame Kinetik	3 – 9
Enhanced Resource Recovery (CCUS)	Öl, Gas, Wasser, Geothermie	Nutzung bei dauerhafter Speicherung	5 – 9

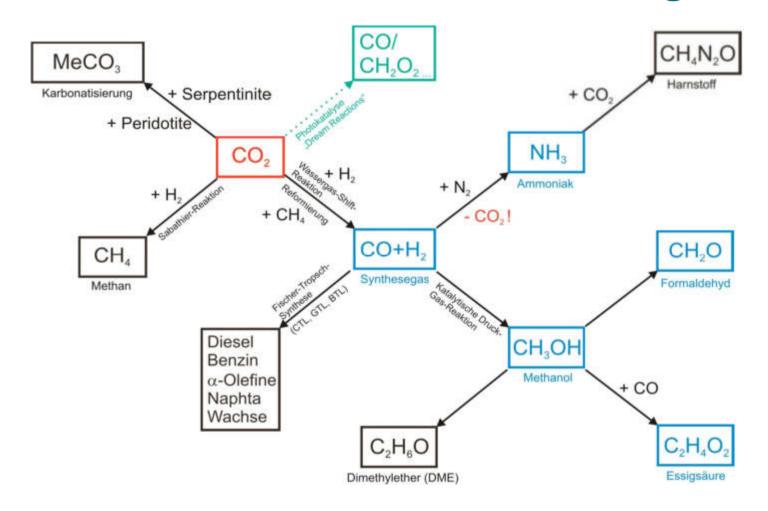


Vier Aktionsfelder hinsichtlich Klimaneutralität in der Industrie

Reduktionspotential nach Aktionsfeld

- Elektrifizierung und allgemeine Energieeffizienz
- CO₂-neutrale Gase und Biomasse
- Carbon Capture Sequestration and Use (CCU)
- Verstärkte Verwendung von Sekundärrohstoffen (noch nicht systematisch untersucht)

THG Reduktion in kt CO2e nach Sektoren



CCU Produkte am Beispiel Chemikalien und Treibstoffe

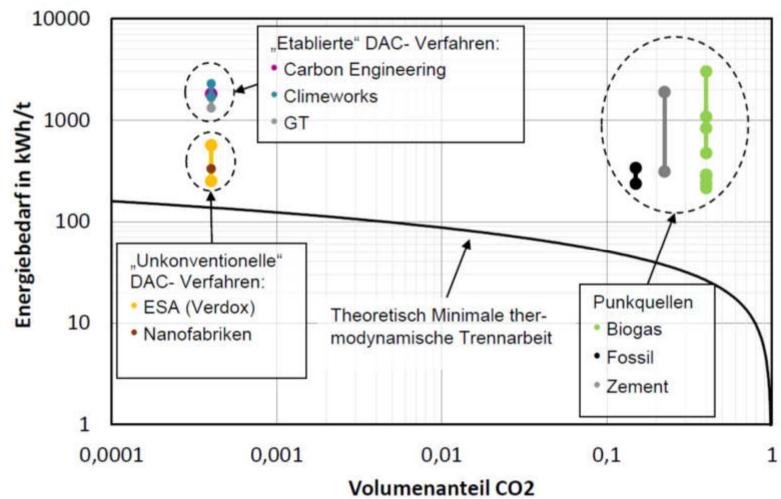
Überblick chemischer Verwertungsrouten

CCU in Österreich

Sektorübergreifende Synergien notwendig

- Besonders lohnenswert für die Abscheidung von CO₂ sind Punktquellen → besonders industrielle Standorte mit unvermeidbaren, geogenen Emissionen ohne technische Alternativen
- Summe geogener Emissionen in Österreich aus dem Industriesektor Steine und Erden, Glas ~4 Mt CO₂
 - · Zement, Magnesia, Glas, u.ä.

$$CaCO_3 \rightarrow CaO + CO_2$$

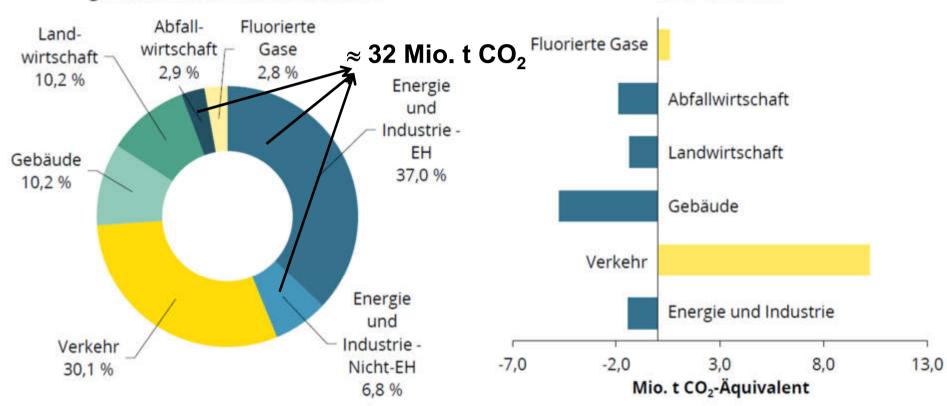

Beispiel:

- → Synthese von 4 Mt CO₂ mit H₂ zu Methanol
 - → 2,9 Mt Methanol könnten über MtO die derzeitige Olefinproduktion Österreichs bereitstellen (~1,3 Mt)
 - →18 TWh H₂ benötigt (Produktionsvorketten müssen berücksichtigt werden!)

Energieverbrauch der CO₂ Abscheidung

Quelle: KIT 2020

CO₂ Quellen und Mengenpotentiale



Anteil der Sektoren an THG-Emissionen in Österreich

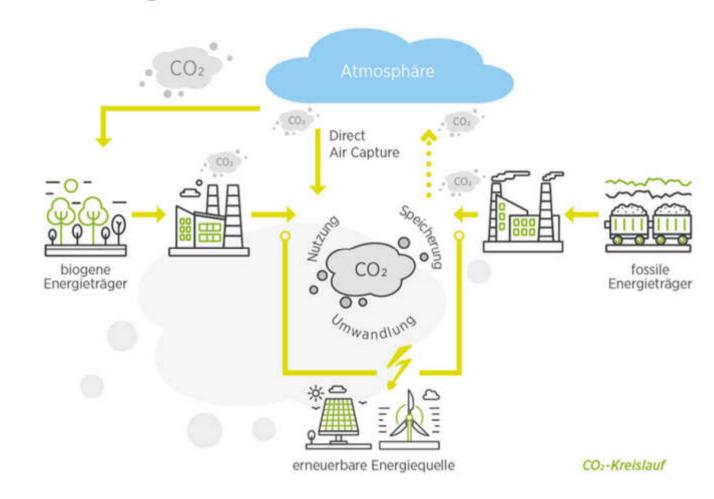
Änderung der Emissionen zwischen 1990 und 2019

Quelle: UMWELTBUNDESAMT (2021a)

Mengenpotentiale und Break-Even Kosten in 2050

Pathway	Removal potential in 2050 (Mt CO ₂ removed per year)	Utilization potential in 2050 (Mt CO ₂ utilized per year)	Breakeven cost of CO ₂ utilization (2015 US\$ per tonne CO ₂ utilized)
Conventional utilization			
Chemicals	Around 10 to 30	300 to 600	-\$80 to \$320
Fuels	0	1,000 to 4,200	\$0 to \$670
Microalgae	0	200 to 900	\$230 to \$920
Concrete building materials	100 to 1,400	100 to 1,400	-\$30 to \$70
Enhanced oil recovery	100 to 1,800	100 to 1,800	-\$60 to -\$45
Non-conventional utilization			
BECCS	500 to 5,000	500 to 5,000	\$60 to \$160
Enhanced weathering	2,000 to 4,000	n.d.	Less than \$200*
Forestry techniques	500 to 3,600	70 to 1,100	-\$40 to \$10
Land management	2,300 to 5,300	900 to 1,900	-\$90 to -\$20
Biochar	300 to 2,000	170 to 1,000	-\$70 to -\$60

Quelle: Nature | Vol 575 | 7 November 2019 | https://doi.org/10.1038/s41586-019-1681-6



Aspekte zum Beitrag zur Klimaneutralität

Wichtige Beurteilungskriterien

- 1. Die CO₂ Quelle
- 2. Die CO₂ Emission des CCU-Prozesses
- 3. Die Bindungsdauer des CO₂

Gesamt CO₂-Bilanz

- Alleine die Nutzung von CO₂ bedingt noch keine negative Gesamt–CO₂– Bilanz!
- Für jeden CCU Prozess ist daher eine LCA (Life Cycle Analysis)
 durchzuführen, ggf. kombiniert mit einer TEA (Techno-Economic Assessment)
- Dafür existieren genaue Richtlinien:

Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO₂ Utilization

Published August 2018

This work is available under DOI: 10.3998/2027.42/145436

http://hdl.handle.net/2027.42/145436

ISBN 978-1-9164639-0-5

SUPPORTED BY

Projektbeispiele für Österreich

Projekt CaCTUS

Carbon Capture, Transformation, Utilization & Storage

"In the scenarios for meeting the 1.5°C target, Carbon Capture and Storage (CCS) or Carbon Capture and Utilization (CCU) is de facto unavoidable"

(siehe IPCC Special Report on 1.5°C)

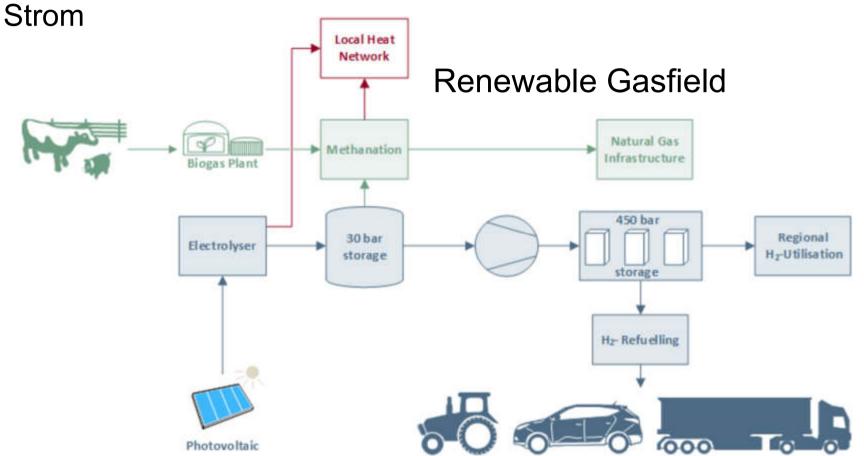
Quantifizierung
Technische Potenziale
CCU/ CCS gemäß NECP

techno-ökonomische
Bewertung d.
identifizierten
Kohlenstoffrouten

- In Österreich kaum verlässliche Daten zu Potenzial dieser Technologien vorhanden
- Austrian Climate Research Program (ACRP) adressiert dieses Defizit im 14. Call for Proposals

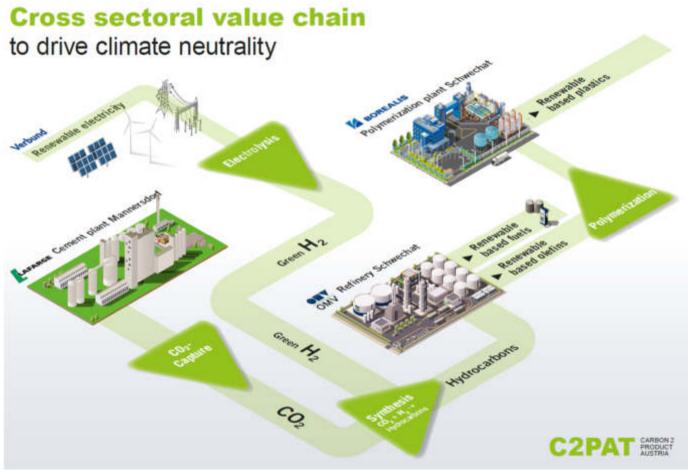
Identifikation
quellenspezifische
Klimawirkung &
senkenbezogene
Nettominderungspotenziale

Bewertung derzeitige Hindernisse u. Unzulänglichkeiten



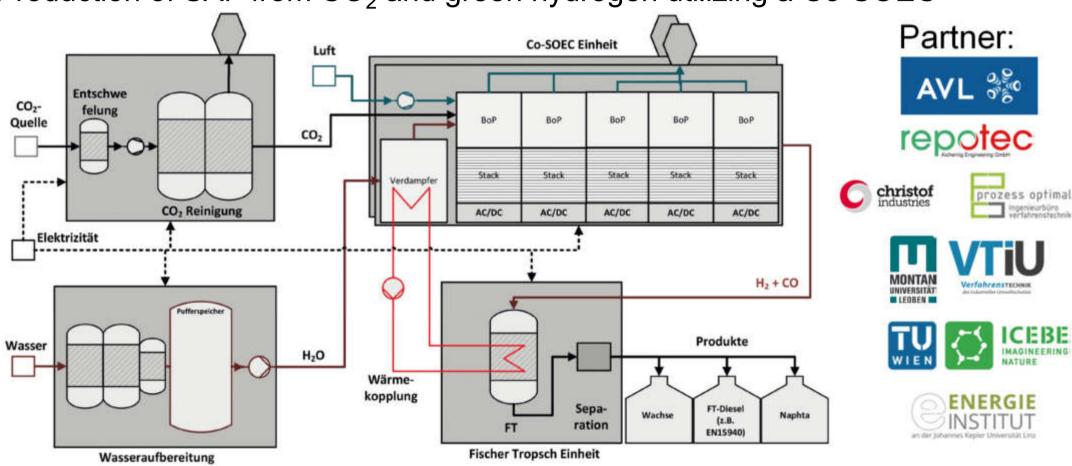
Power-to-Gas Demonstrationsanlage in der Südsteiermark

Grüner Wasserstoff und synthetisches Methan als Speicher für erneuerbaren

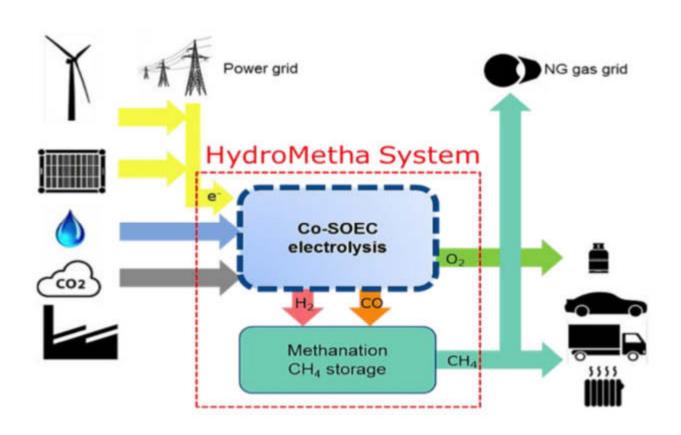


Carbon 2 Product Austria – C2PAT

Erzeugung von Polyolefinen (PP, PE) aus CO₂ und grünem Wasserstoff



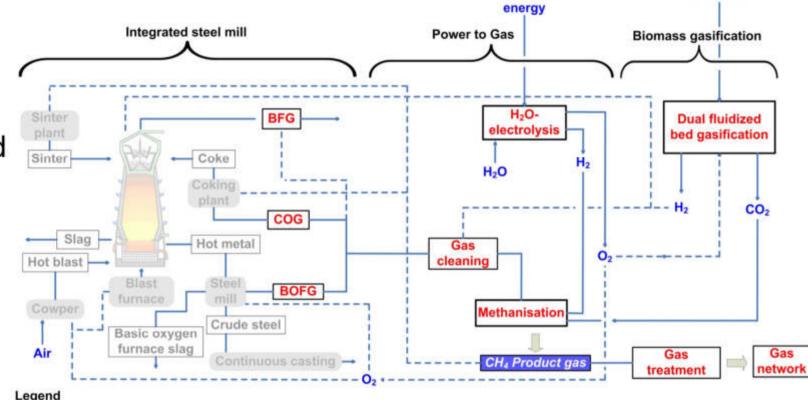
"Innovation Flüssige Energie"


Production of SAF from CO₂ and green hydrogen utilizing a Co-SOEC

"Hydrometha"

10 kW Demonstrator for Co-SOEC coupled with catalytic methanation

Partner:


Renewable Steel Gases: Closed CO, Loop in Steel Production

- Conversion of blast furnace gas in synthetic methane
- Green hydrogen and biomass as energy source
- 0,8 Mio. t CO₂/a Reduction at voestalpine Linz

Renewable

BFG...Blast Furnace Gas BOFG...Basic Oxygen Furnace Gas (Converter Gas) COG...Coke Oven Gas

Biomass

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Univ.-Prof. Dr.-Ing. Markus Lehner

Lehrstuhl für Verfahrenstechnik

des industriellen Umweltschutzes

Montanuniversität Leoben

E-mail: markus.lehner@unileoben.ac.at

