PEATGOV – Governance Options for Climate Smart Agriculture on Austrian Peatlands

15 UFE ON LAN

13 A

Lena Schaller¹, Laura Eckart¹, Jochen Kantelhardt¹, Stephan Glatzl², Christine Kroisleitner², Ralf Nordbeck³, Karl Hogl³

¹ Institute of Agricultural and Forestry Economics, University of Natural Resouces and Life Sciences Vienna ent of Geography and Regional Research, University of Vienna, Vien

³Institute of Forest, Environmental and Natural Resource Policy, University of Natural Resouces and Life Sciences Vienn

INTRODUCTION

Peatlands provide a diverse range of ecosystem services, most importantly regulating services including climate regulation via carbon sequestration and storage. They are the most efficient terrestrial ecosystem type for carbon storage. While peatlands cover only 3% of the global land area, they store about 30% of the terrestrial organic carbon pool. Agricultural use of peatlands usually requires lowering the water table via drainage, while the depth of the drainage determines the possible land use and intensity of use. Drainage causes huge greenhouse gas (GHG) emissions and loss of water holding capacity. There are two ways for mitigating GHG emissions from peat soils: avoiding new drainage and reducing emissions on the existing drained area. The former is more easily achieved, while the latter requires a distinctive change of agricultural management on the sites, such as favouring perennial crops, reducing the management intensity, and raising the groundwater level. The realization of mitigation measures on peatland often implies important socioeconomic consequences for affected farms.

OBJECTIVES

Evaluate alternative options for peatland management in Austria, to assess their potential for emission reduction and to identify the most effective governance approaches and policies to support a transformation and adaption towards climatesmart agriculture on peatlands.

WP1 Assessing and evaluating governance approaches and policies for climate-smart agriculture in different agricultural contexts in Austria	WP2 Assessing agricultural land use and management on peatland sites in Austria. Analysing of socio-economic aspects and acceptance of climate-smart management adaptations and policy options in different natural and socioeconomic contexts and for typical farms.	WP3 Assessing the regional potential for avoiding GHG emissions by alternative policies and land-management options in different Austrian contexts
WP4		

Development of an integrative evaluation matrix: implementation pathways for policy options

management alternatives and potentials for mitigating GHG emissions

WP5

Regional/local stakeholder workshops

WP6

Assessing realistic potentials for mitigating GHG emissions by climate-smart agriculture in the Austrian context (upscaling)

RESEARCH APPROACH

PeatGov-Austria starts from the three main pillars of the conception of "climate smart agriculture" (CSA), as advocated by the United Nations (cf. FAO 2013, 2017) and the World Bank (2018). Presented by FAO in 2010, CSA aims at contributing to the achievement of sustainable development goals by a) sustainably increasing agricultural productivity and incomes; b) adapting and building resilience to climate change; and c) reducing and/or removing GHG emissions, where possible (FAO 2013).

RESEARCH METHODS

- Literature review
- Analysis of spatial data
- Identification of case study regions
- Farmers interviews
- Expert/stakeholder interviews
- Economic cost modelling
- Spatial analyses
- Soil mapping
- Emission modelling

MAIN DATA-SOURCES

- **INVEKOS and GIS INVEKOS**
- EBOD
- DTM
- HAÖ
- Tbd: LUKAS, JRC soil map, Hydro

FIRST RESULTS

Sources of financing and policy instruments

Start: December 1st 2020, 24 months

Coodination: Univ.Prof. DI Dr. Karl Hogl, BOKU

ACRP12 - PeatGov-Austria - KR19AC0K17573

Sources of financing	Instruments	Example
Governmental funds (EU and /or national)	- European Agriculture Fund for Rural Development - European Regional Develop-ment Fund - National payment schemes	 - Co-financing the 2nd Pillar of EU CAP, e.g. peatland restoration, habitat management - Climate mitigation by peatland rewetting (round tables, pilot projects, research) - Restoration, habitat management
Compulsory measures or payments (costs-by-cause)	- Biodiversity offsetting - Taxes, levies, charges	- Compensation allowances for building or mining activities used for peatland rewetting - Water withdrawal fee used for peatland rewetting to improve water quality
Voluntary payments (allowing for private sector/ persons investment)	 Voluntary markets for ESS Sponsorship, donation Fees for recreation 	- MoorFutures (Germany), UK Peatland Code - NGOs collecting money for restoration - Entrance fee, hunting licence

Funding: 249.000 €

Different types and intensities of agricultural land use and management on peatland sites in Austria

Alps: predominantly grassland; forage for dairy cattle Kärtner Becken: predominantly arable land; forage production Seewinkel: heterogeneous use (field sizes/crop rotation): no animal husbandry

Agriculture on peatland	Alps	Kärntner Becken	Seewinkel
farm size (mean)	20,12 ha	19,86 ha	44,68 ha
farm types	75% forage farming 7% crop farming 3% mixed	34% forage farming 21% crop farming ^{15% mixed}	49% crop farming 30% permanent cropping 13% mixed
field size (mean)	1,42 ha	1,58 ha	2,74 ha
land use	71% meadow/pasture (≥3 uses) 11% meadow/pasture (2 uses) 6% bedding meadow	25% grain corn 14% meadow/pasture (≥3 uses) 10% alternating (grass-/cropland)	21% winter wheat 20% alternating (grass-/cropland) 10% grain com
livestock density	1,28 LU/ha	1,02 LU/ha	0,03 LU/ha
livestock (% of all farms keep)	77% cattle (incl. 51% dairy cows) 49% poultry	49% cattle (incl. 15% dairy cows) 47% poultry 37% pigs	negligible

The spatial pattern of land use, including ownership and the share of peatland in the total area of a farm, has a strong influence on the feasibility of rewetting

Structure of field & land use colour = same use)

Assessment rules for available soil and environmental data

- Hierarchical order for use of input-data:
- large resolution will be preferred to small resolution
- Field measurements will be preferred to remote sensing
- Meta information requirements: description of measurement unit, extent. resolution. measurement period
- Translation of Austrian soil classes to world reference base (WRB) classes in order to accomplish international comparability

Classifications	Österr. Bodensystematik	WRB (World reference base for soil resources 2014)					
Key-Class	Moore und Anmoore Histosol						
Thickness of soil organic layer	>= 30cm	> =10 cm from soil surface OR >= 60 cm, if 75 vol.% are moss fibres or >= 40 cm for other materials					
Amount of organic Material	Moore >= 35% SOM , Anmoor between 10% and 35% SOM	if thickness < 20cm: >= 12% SOC in the first 20cm of soil.					

NEXT STEPS

		Dezz	0				-						De	c202	1									-	Nov2
Adviso	ry Board					A	81, M	0								A	12, M	111							
	Timeline [month]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
WP1	Assessing governance approaches and policy instruments					j,	M1 -		Í							MB	1								
NP2	Assessing farm-level socio-economic						M2	MS	M7							M9									
	enects	_		-		-		-	-	_	_	_		_	-	_		1							
NP3	Assessing regional potentials of avoiding GHG emissions						M3		1							M10	-								
NP4	Interdiscipl. synthesis - potential for CSA on peatlands (case study results)																	÷	M12						
WP5	Regional/local stakeholder workshops																					M13			
WP6	Upscaling of findings: CSA potential on acricultural peatlands in Austria																							M	14

atal ar chare of A പപ 2491 89174 3%

41%

38%

1025 133 13% 62% Arable lan Tab. 2: Soil classes: Moor, Anmoor (ebod, BFW, 2010)) for arable and arassland (Feldbodenstücke, AMA, 2019)

e hase (WRB