

The Role of Persistence in Tackling Austria's Climate Target:

Policies for the Transport Sector (PETRA)

Status Report for 01 Dec 2019 – 30 Jun 2020

M. JONAS, P. ŽEBROWSKI (IIASA, Laxenburg, AT) G. BACHNER, K. STEININGER (WegCenter, Graz, AT) T. EIBINGER, H. MANNER (Univ Graz, AT) A. ANGELINI, H. HEINFELLNER, S. LAMBERT (EAA, Vienna, AT) **Project funded by:**

ACRP11–PETRA –KR18AC0K14626 ID: 01 Dec 2019 Start: 30 Nov 2021 End: SDG: #13 (Climate Action) **Partners:**

About the PETRA project

Problem:

With the **Paris Agreement** in late 2015 the international community signalled both its commitment to long-term carbon-free societies and its adherence to a voluntary, bottom-up climate policy. Austria was one of the first countries to ratify the Paris Agreement.

I. The physical perspective on

memory and persistence

We observe during the increase of GHG emissions: The atmosphere expands (**rather quickly**)^{2,3} while part of the (carbon) emissions are locked away (rather slowly) in land and oceans.^{4–7} It is widely debated how reversible and how much out of sync the latter process is compared to the first.

II. The socio-economic perspective on

UNI

memory and persistence

Literature Review (completed)

From an Austrian perspective, its **transport sector** is of particular concern. Its emissions have grown significantly, in 2018 amounting to more than 47% (without emission trading) of Austria's greenhouse gas (GHG) emissions.¹ The transport sector is governed by delays, e.g. caused by long-lasting vehicle stocks in operation.

Policies typically influence current investments, but current emissions are also governed by **earlier** measures and investments – what we call the **memory** of the system (retrospective view). That is, former decisions come with a temporal, or explainable, outreach into the (near-term) future – what we call the **persistence** of the system (prospective view).

For a reliable policy analysis into the future, the quantification of the system's memory and persistence is important.

PETRA is novel:

- (i) allows for establishing a robust relationship between relevant (national and international) policies and the diffusion of their impact (e.g. the phase-in of new vehicles in the market); and
- (ii) allows for quantifying the memory-persistence effect caused by the

Our current knowledge suggests that using a Maxwell body (MB), consisting of an elastic element (E) and damping (viscous) element (**D**), as a useful analogy to describe the relationship between atmospheric expansion and terrestrial and oceanic carbon uptake.

We take atmospheric CO_2 concentrations for 1959–2018 (in Pa) as **observable (strain** ϵ) and CO₂ emissions for 1959–2018 (converted to Pa) as **deliverable (stress** σ) and use the stress-explicit form of the stress-strain relation for the MB:

$$\sigma(t) = \sigma(0) \exp\left(-\frac{E}{D}t\right) + E \int_0^t \dot{\varepsilon}(t) \exp\left(\frac{E}{D}(\tau - t)\right) d\tau$$

For clarity of demonstration, let $\sigma(0) = 0$, $\varepsilon(0) = 0$ and $\varepsilon(t) = m_{\varepsilon}t$ (we can deal with polynomial and exponential $\varepsilon(t)$). Then

$$\sigma(t) = Dm_{\varepsilon} \left(1 - \exp\left(-\frac{E}{D}t\right) \right) = \sigma(q, n) = Dm_{\varepsilon}(1 - q^n)$$
$$= Dm_{\varepsilon}(1 - q)S_n$$

where $\frac{D}{E}$ is the characteristic **relaxation time** of the MB, $n = \frac{t}{\Delta t_n}$ is a dimensionless time (here $\Delta t_n = 1$ year), $q = \exp\left(-\frac{E}{D}\Delta t_n\right)$ and

- Identification and selection of determinants relevant to the transport sector (by GHG and particular emissions)
- \rightarrow Literature on GHG determinants is often based on few identities and equations only
- Determinants may be endogenous (interlinked)
- Creation of an extensive list of past transport related policies (mostly with the scope on Austria, a few with the scope on the EU)

Econometric Analysis (commenced)

Structural Vector Autoregressive (SVAR) Model

- \rightarrow All variables are treated as endogenous; each variable is explained by the past values of all variables
- **Pros**: Captures the dynamics of multiple endogenous variables; dynamic interrelations of variables can be studied; fewer restrictions need to be imposed compared to other econometric models
- **Cons**: A large number of parameters needs to be estimated; due to data-availability, not more than 2–6 variables may be included in the model; some restrictions still have to be imposed on the model
- Limited data-availability: Other econometric models may be employed to capture the dynamics of interest

Methodology – Data Provision (advanced)

- EAA made available two suitable energy scenarios which are used to extract data:
- WEM (with existing measures) 2013: contains data from 1950 to 2030
- WEM (with existing measures) 2019: contains data from 1990 to

share of the old, still existing (remaining) vehicles in the market.

our knowledge, such a data-based, retrospective, То qualitative-quantitative policy-response analysis has not yet been carried out, neither in Austria nor elsewhere.

This analysis will offer two important benefits. It will help: **1)** to model-generate more robust **prospective** emission scenarios (or to test existing ones in terms of plausibility); and

2) decision-makers to better understand the effectiveness of their emission reduction policies over time and vis-à-vis uncertainty.

The objective of the poster is to report on both **I**) the **theoretical** advance and II) the data processing progress we have achieved so far (**01 December 2019 – 30 June 2020**).

I) Theoretical advance:

We use a simple, insightful example to define **memory** and persistence. To this end, we break down our system into two parts: a **socio-economic part** and a **systemic (physical) part** (see **Fig. 1**). Approaching memory and persistence systemically first will come as a great advantage **before getting to grips with memory** and persistence socio-economically.

II) Data Processing:

$$S_n = \frac{1 - q^n}{1 - q} = \sum_{i=1}^{n-1} q^i \leftarrow Past$$

We call S_n **memory**. To explore the dependence of σ on q we take

$$\frac{\partial \sigma(q,n)}{\partial q} = Dm_{\varepsilon} \frac{\partial}{\partial q} \left((1-q)S_n \right) = Dm_{\varepsilon} \left((1-q)T - q \right)$$

where

$$T = -\frac{q^n}{1-q^n} \left(\frac{t}{\Delta t_n}\right) + \frac{q}{1-q} \xrightarrow[n \to \infty]{} \frac{q}{1-q} = T_{\infty}$$

We call T the characteristic **delay time** and $P = T^{-1}$ the characteristic persistence.

Let's assume that we could change q in retrospect at time t = 0. Then, if T is small, that is ΔM per Δq (or, likewiese, $\frac{\Delta M}{M}$ per $\frac{\Delta q}{q}$) is small, P is great because the change in the systems characteristics (contained in q) hardly influences the MB's past. As a consequence, the past exhibits a great path dependency.

2050

- WEM scenarios can be seen as business as usual (BAU) scenarios
- Data within the WEM scenarios from 1990 to 2018 come from the Austrian GHG Inventory (OLI)
- Biggest challenge: To satisfy vehicle category needs \rightarrow categories ", PC Otto with catalyst" and ", PC Otto without catalyst", e.g., are not distinguished in the WEM scenarios
- Consequence: Data had to be disaggregated and reaggregated to match vehicle category needs
- Second biggest challenge: To merge scenarios
- Finding for the WEM19: Retrospective analysis within WEM19 scenario takes place only back to 1990, not 1950 (for instance, wrt detailed information on exhaust gas after treatment)

Consequence: This leads to some data leaps in the complete time series 1950 to 2050, which cannot simply be averaged because valuable policy-related information would be lost

Selected Variables and Data Availability

Variables	Metric	Categories	Data Psg.	Data Freight
Emissions	tonnes, g/km	CO2, NOx, PM (total and specific)	1950*	1950*
Activity	Pkm, tkm and <mark>km/PC</mark>	Passenger: Otto w Cat, Otto wo Cat, HEV, PHEV, Diesel, Diesel HEV, Diesel PHEV, EV; Freight: LDV w Cat, LDV wo Cat, LDV Diesel, LDV EV, HDV Otto, HDV Diesel, HDV Diesel HEV, HDV EV	1950	1950
Population	Avg. Population / year		1950	1950
GDP/Capita	Constant EUR		1954	1954
Fuel Prices	Constant EUR	Normal, Super, Diesel	1950	1950
F	Final Transport Energy Consumption /	Passenger: Otto w Cat, Otto wo Cat, HEV, PHEV, Diesel, Diesel HEV, Diesel PHEV, EV;	1050	1050

Data processing took place concomitantly, with the main focus on the socio-economic part of our system.

Figure 1: Stylized systems approach to put memory and persistence into context

Figure 2: Graphical interpretation of delay time *T* and explainable outreach (if *M*-defined)

What we know so far:

- The **memory** of a MB stems from its **damping** element, responsible for the exponential behavour of the delivarable (stress).
- But memory exists even with **no** damping element around. Old cars, e.g., contribute to today's emissions and may be considered as memory of the transport sector, which one wants to understand better **before influencing emissions socio-economically**.
- On smaller spatio-temporal scales (e.g., Austria's transport sector) emissions may exhibit polynomial rather than exponential behavior (potentially with a time-dependent q). But we can deal with that.

This provides the basis for data-processing emissions from Austria's transport sector from a socio-economical perspective, as described in II.

Looray Intoncity			1050	1050
chergy intensity	Activity	Freight: LDV w Cat, LDV wo Cat, LDV Diesel, LDV EV,	1920	1920
		HDV Otto, HDV Diesel, HDV Diesel HEV, HDV EV		
	total stock	Passenger: Otto w Cat, Otto wo Cat, HEV, PHEV,		1950
Vahiela Stack		Diesel, Diesel HEV, Diesel PHEV, EV	1050	
Vehicle SLOCK		Freight: LDV w Cat, LDV wo Cat, LDV Diesel, LDV EV,	1920	
		HDV Otto, HDV Diesel, HDV Diesel HEV, HDV EV		

Table 1: Turquoise: data for passenger cars disseminated; magenta: data disseminated but still to be checked for inconsistencies; *: data for PM10 available only from 1990 onward.

R	References					
1.	EAA. Austria's National Inventory Report 2020. Environment Agency Austria, Report Rep-0724 (2020). <u>https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0724.pdf</u>					
2.	Lackner, B. C., Steiner, A. K., Hegerl. G. C. & Kirchengast, G. Atmospheric climate change detection by radio occultation using a fingerprinting method. J. Climate 24, 5275–5291 (2011). https://doi.org/10.1175/2011JCLI3966.1					
3.	Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U. & Kirchengast, G. GPS radio occultation for climate monitoring and change detection. <i>Radio Sci.</i> 46 , RS0D24 (17pp) (2011). <u>https://doi.org/10.1029/2010RS004614</u>					
4.	Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J., Ringer, M.A., Robertson, E. & Wu, P. Reversibility in an Earth system model in response to CO ₂ concentration changes. <i>Environ. Res. Lett.</i> 7 , 24013 (9pp) (2012). <u>https://doi.org/10.1088/1748-9326/7/2/024013</u>					
5.	Schwinger, J. & Tjipurta, J. Ocean carbon cycle feedbacks under negative emissions. <i>Geophys. Res. Lett.</i> 45 , 5062–5070 (2018). https://doi.org/10.1029/2018GL077790					
6.	5. Smith, P. Soils and climate change. Curr. Opin. Enviro. Sust. 4, 539–544 (2012). https://doi.org/10.1016/j.cosust.2012.06.005					
7.	Dusza,Y, Sanchez-Cañete, E. P., Le Galliard, JF., Ferrière, R., Chollet, S., Massol, F., Hansart, A., Juarez, S., Dontsova, K., van Haren, J., Troch, P., Pavao-Zuckerman, M. A., Hamerlynck, E. & Barron-Gafford, G. A. Biotic soil-plant interaction processes explain most of hysteric soil CO ₂ efflux response to temperature in cross-factorial mesocosm experiment. <i>Sci. Rep.</i> 2020; 10 , 905 (2020). <u>https://doi.org/10.1038/s41598-019-55390-6</u>					