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About the PETRA project

Problem:

With the Paris Agreement in late 2015 the international community

signalled both its commitment to long-term carbon-free societies and

its adherence to a voluntary, bottom-up climate policy. Austria was one

of the first countries to ratify the Paris Agreement.

From an Austrian perspective, its transport sector is of particular

concern. Its emissions have grown significantly, in 2018 amounting to

more than 47% (without emission trading) of Austria’s greenhouse gas

(GHG) emissions.1 The transport sector is governed by delays, e.g.

caused by long-lasting vehicle stocks in operation.

Policies typically influence current investments, but current emissions

are also governed by earlier measures and investments – what we

call the memory of the system (retrospective view). That is, former

decisions come with a temporal, or explainable, outreach into the

(near-term) future – what we call the persistence of the system

(prospective view).

For a reliable policy analysis into the future, the quantification

of the system’s memory and persistence is important.

PETRA is novel:

(i) allows for establishing a robust relationship between relevant

(national and international) policies and the diffusion of their impact

(e.g. the phase-in of new vehicles in the market); and

(ii) allows for quantifying the memory-persistence effect caused by the

share of the old, still existing (remaining) vehicles in the market.

To our knowledge, such a data-based, retrospective,

qualitative-quantitative policy-response analysis has not yet

been carried out, neither in Austria nor elsewhere.

This analysis will offer two important benefits. It will help:

1) to model-generate more robust prospective emission scenarios (or

to test existing ones in terms of plausibility); and

2) decision-makers to better understand the effectiveness of their

emission reduction policies over time and vis-à-vis uncertainty.

The objective of the poster is to report on both I) the theoretical 

advance and II) the data processing progress we have achieved 

so far (01 December 2019 – 30 June 2020).

I) Theoretical advance:

We use a simple, insightful example to define memory and

persistence. To this end, we break down our system into two parts: a

socio-economic part and a systemic (physical) part (see Fig. 1).

Approaching memory and persistence systemically first will

come as a great advantage before getting to grips with memory

and persistence socio-economically.

II) Data Processing:

Data processing took place concomitantly, with the main focus

on the socio-economic part of our system.

Figure 1: Stylized systems approach to put memory and 
persistence into context 
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I. The physical perspective on 

memory and persistence

We observe during the increase of GHG emissions: The atmosphere

expands (rather quickly)2,3 while part of the (carbon) emissions are

locked away (rather slowly) in land and oceans.4–7 It is widely

debated how reversible and how much out of sync the latter process is

compared to the first.

Our current knowledge suggests that using a Maxwell body (MB),

consisting of an elastic element (E) and damping (viscous) element

(D), as a useful analogy to describe the relationship between

atmospheric expansion and terrestrial and oceanic carbon uptake.

We take atmospheric CO2 concentrations for 1959–2018 (in Pa) as

observable (strain ε) and CO2 emissions for 1959–2018 (converted

to Pa) as deliverable (stress 𝜎) and use the stress-explicit form of

the stress-strain relation for the MB:
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For clarity of demonstration, let 𝜎 0 = 0, 𝜀 0 = 0 and 𝜀 𝑡 = 𝑚𝜀𝑡 (we

can deal with polynomial and exponential 𝜀(𝑡)). Then
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We call 𝑆𝑛 memory. To explore the dependence of 𝜎 on 𝑞 we take
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We call 𝑇 the characteristic delay time and 𝑃 = 𝑇−1 the characteristic

persistence.

Let’s assume that we could change 𝑞 in retrospect at time 𝑡 = 0. Then,

if 𝑇 is small, that is Δ𝑀 per Δ𝑞 (or, likewiese,
Δ𝑀

𝑀
per

Δ𝑞

𝑞
) is small, 𝑃 is

great because the change in the systems characteristics (contained in

𝑞) hardly influences the MB’s past. As a consequence, the past exhibits

a great path dependency.

What we know so far:

• The memory of a MB stems from its damping element,

responsible for the exponential behavour of the delivarable (stress).

• But memory exists even with no damping element around. Old cars,

e.g., contribute to today’s emissions and may be considered as

memory of the transport sector, which one wants to understand

better before influencing emissions socio-economically.

• On smaller spatio-temporal scales (e.g., Austria’s transport

sector) emissions may exhibit polynomial rather than exponential

behavior (potentially with a time-dependent 𝑞). But we can deal

with that.

This provides the basis for data-processing emissions from

Austria’s transport sector from a socio-economical

perspective, as described in II.

II. The socio-economic perspective on 

memory and persistence

Literature Review (completed)

• Identification and selection of determinants relevant to the transport

sector (by GHG and particular emissions)

→ Literature on GHG determinants is often based on few identities

and equations only

• Determinants may be endogenous (interlinked)

• Creation of an extensive list of past transport related policies

(mostly with the scope on Austria, a few with the scope on the EU)

Econometric Analysis (commenced)

• Structural Vector Autoregressive (SVAR) Model

→ All variables are treated as endogenous; each variable is explained

by the past values of all variables

• Pros: Captures the dynamics of multiple endogenous variables;

dynamic interrelations of variables can be studied; fewer restrictions

need to be imposed compared to other econometric models

• Cons: A large number of parameters needs to be estimated; due to

data-availability, not more than 2–6 variables may be included in the

model; some restrictions still have to be imposed on the model

• Limited data-availability: Other econometric models may be

employed to capture the dynamics of interest

Methodology – Data Provision (advanced)

• EAA made available two suitable energy scenarios which are used to

extract data:

WEM (with existing measures) 2013: contains data from 1950 to

2030

WEM (with existing measures) 2019: contains data from 1990 to

2050

• WEM scenarios can be seen as business as usual (BAU) scenarios

• Data within the WEM scenarios from 1990 to 2018 come from the

Austrian GHG Inventory (OLI)

• Biggest challenge: To satisfy vehicle category needs → categories

„PC Otto with catalyst“ and „PC Otto without catalyst“, e.g., are not

distinguished in the WEM scenarios

• Consequence: Data had to be disaggregated and reaggregated to

match vehicle category needs

• Second biggest challenge: To merge scenarios

• Finding for the WEM19: Retrospective analysis within WEM19

scenario takes place only back to 1990, not 1950 (for instance, wrt

detailed information on exhaust gas after treatment)

Consequence: This leads to some data leaps in the complete time

series 1950 to 2050, which cannot simply be averaged because

valuable policy-related information would be lost

Selected Variables and Data Availability

Table 1: Turquoise: data for passenger cars disseminated; magenta:

data disseminated but still to be checked for inconsistencies; *: data

for PM10 available only from 1990 onward.

Figure 2: Graphical interpretation of delay time 𝑇 and explainable outreach (if 𝑀-defined) 
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