

NITROAUSTRIA

Nitrogen losses from Austrian agricultural soils – modelling to explore trade off effects

Barbara Amon, Cecilie Foldal, Sophie Zechmeister-Boltenstern et al.

17th Austrian Climate Day Graz, 6th - 8th April 2016

NitroAustria Team

B. Kitzler

S. Klatt

B. Amon M. Anderl

G. Dersch

C. Foldal

E. Haas

M. Kasper

P. Strauss

E. Murer

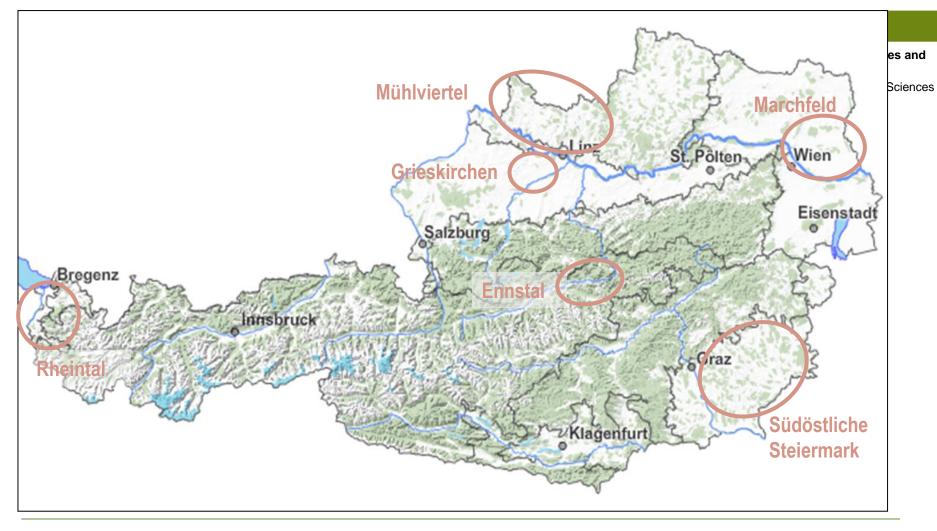
J. Schiefer

B. Schwarzl

S. Zechmeister-**Boltenstern**

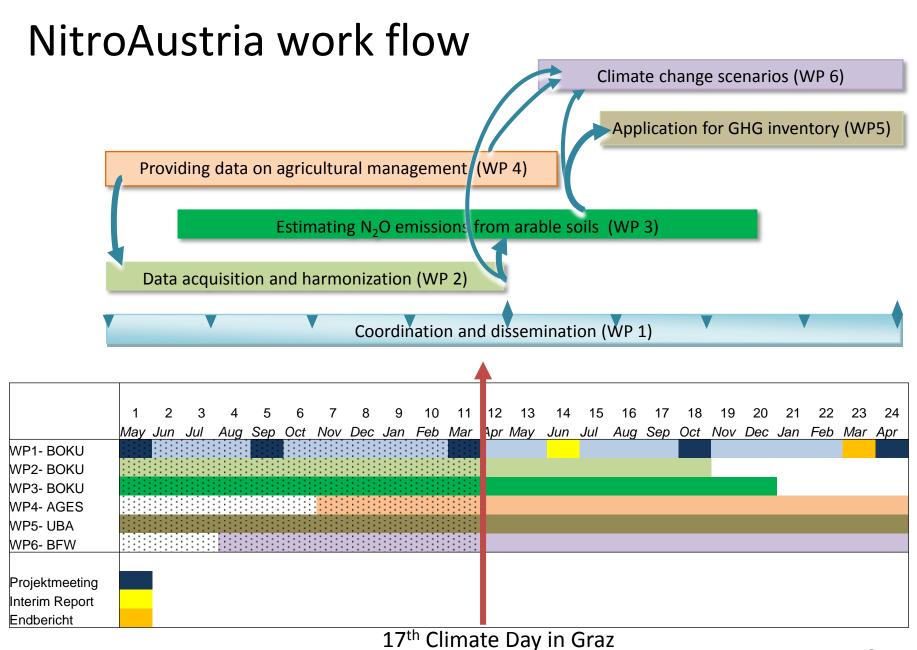
K. Sedy

NitroAustria Background


University of Natural Resources and Life Sciences Vienna Department of Forest and Soil Sciences

The IPCC default emission factor is not able to reflect **region specific** N_2O emissions from Austrian arable soils. Hot spots and hot moments of N_2O emissions can not be identified. Hence no valid recommendations can be given on optimisation measures that would lead to a **reduction of soil N₂O emissions**.

NitroAustria selected regions

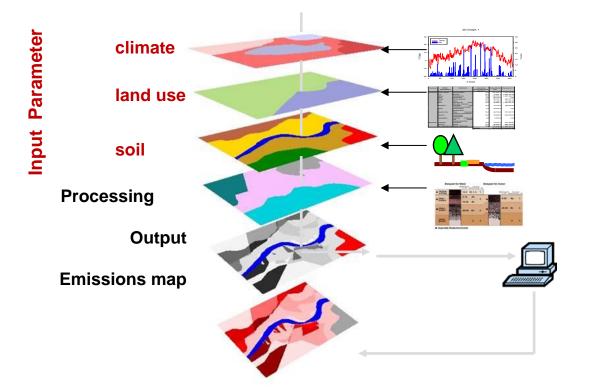


Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Austria

NitroAustria objectives

- NitroAustria analyses N₂O, NO, CH₄ and CO₂ emissions as well as NO₃-leaching from arable soils in Austria with process based ecosystem modelling.
- N and GHG budgets will be produced. Hot spots, hot moments and management optimisation measures will be assessed based on simulation calculations, and region specific emission factors will be derived.
- NitroAustria includes Austrian specific data on agricultural management and integrates climate change scenarios. Results will be evaluated for integration into the **national emission inventory**

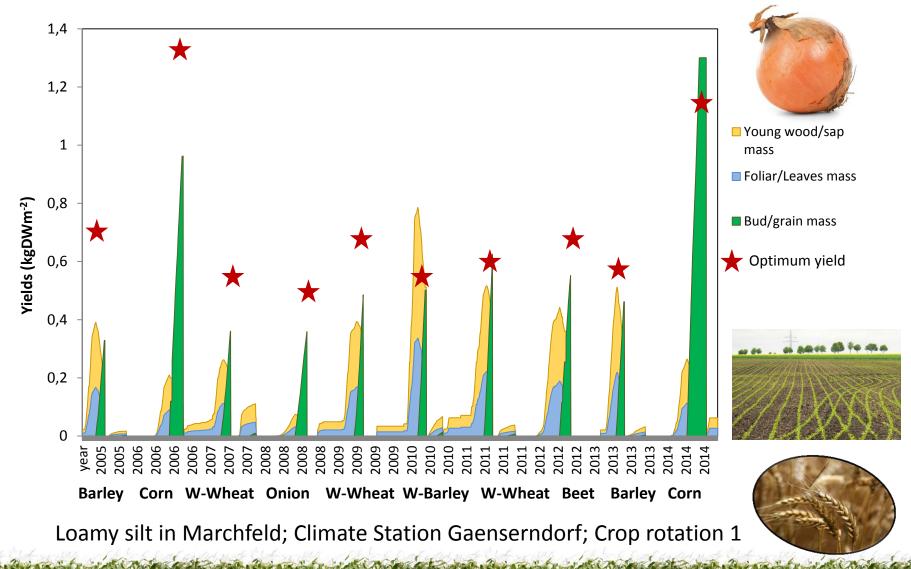
WP 2: Data acquisition and harmonization


Objectives	Deliverables
Generating and providing data pool for WP at site/regional/national scale	
Compilation of relevant spatial input data at regional/national scale	D1: Database with input parameters for LDNDC (18)

LDNDC modelling of N processes

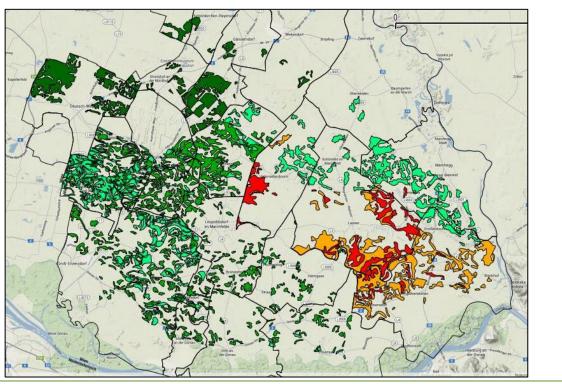
Assessment of NO_3^{-1} leaching and gaseous N and C losses by LDNDC from the selected regions.

 Input parameters like soil properties, climate, N-input and land use, validated up to average expected yields in the specific regions



WP 3: Estimating N₂O emissions

Objectives	 Deliverables D1 Data base fed with consistent model input (12) D2: Validated LDNDC model (20) 		
Evaluation and adaptation of the LDNDC model			
Assessment of N and OC losses and generation maps on N ₂ O emissions from selected regions National inventory on N ₂ O emissions	D3: Regional C and N budgets including N2O emissions and nitrate leaching (18)		
Determination of influencing factors , assessment of mitigation potentials and comparing the emissions with the IPCC default emissions factor	D5: Evaluation of GHG mitigation potential (20) D4: Scientific paper		


Validation of LDNDC input parameters

Preliminary Outputs

Objective: Generating maps on N_2O emissions from the selected regions

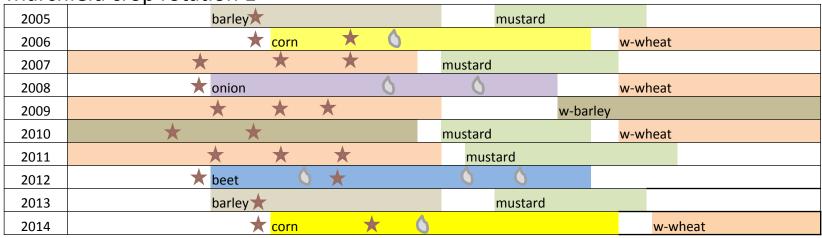
N₂O flux in Marchfeld

University of Natural Resources and Life Sciences Vienna Department of Forest and Soil Sciences

We expect a strong dependency of N₂O emissions on soil types, organic C content and assume to find hotspots in areas with heavy soils.

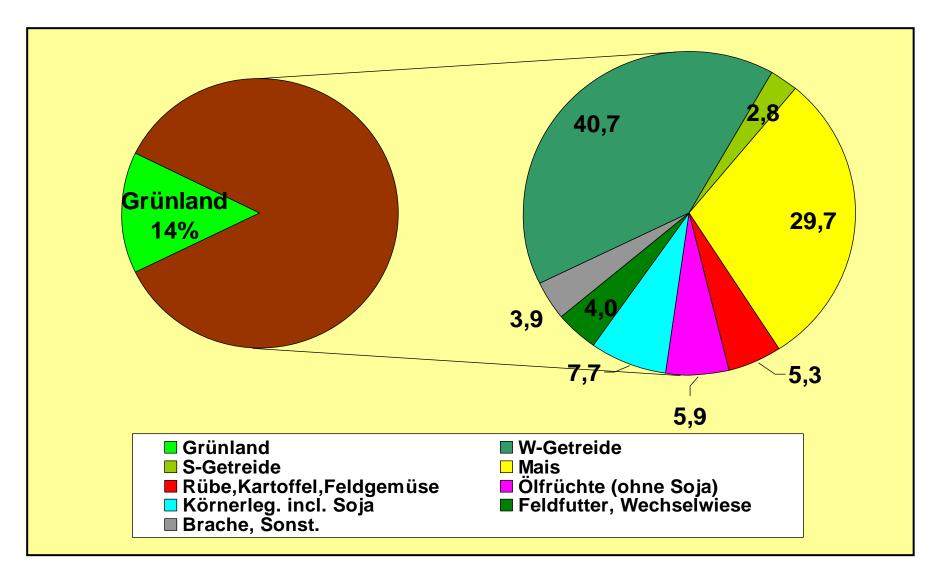
WP 4: Providing data on agricultural management

Objectives	Deliverables
Provision agricultural management data	
Crop rotation scenarios from different arable regions	D1 Forwarding of the scenarios for crop rotations in 4 different arable (12) and 2 grassland regions (18)
Scenarios of different agro- environmental measures from selected regions	D3 Generating and forwarding of the scenarios for two scenarios in three arable regions (20) D4 Assessment of results and practical
	recommendations (24) D5 Scientific paper (24)


WP 4: Providing data on agricultural management

University of Natural Resources and Life Sciences Vienna Department of Forest and Soil Sciences

D1 Generating and forwarding of the scenarios for crop rotations in 4 different arable regions (12)


Marchfeld crop rotation 1

★ = fertilisation event

= irrigation event

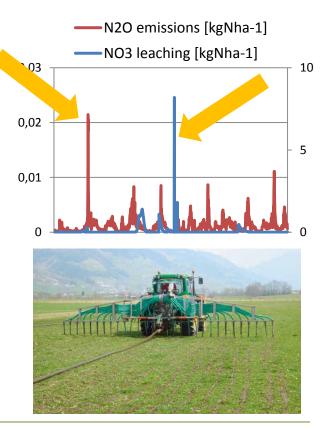
OÖ Zentralraum, Grieskirchen 162.000 ha LN

WP5: Application of results and use for the GHG inventory

Objectives	Milestone / To dos	Deliverables
Input data for uncertainty analyses	M1: Comparison of the different N ₂ O modelling approaches (month 12) + Boku	D4: Scientific paper on N ₂ O emission factor models, influences and results (24) + Boku
Evaluation of model results as input data for the NIR	M2: Evaluation of model results for GHG inventory use (18)	D1: Comparison and Discussion of the model outcome with NIR conception (18)
	M3: Trade-offs between GHG-emissions (month 24)	D2: Discussion and trade-offs between GHG emissions (20) + Boku, AGES
Policy framework on climate friendly farming	Proposed framework of climate friendly agricultural action programme	D3: Proposals for a policy framework towards climate friendly farming (24) + AGES

WP 6: Climate change scenarios and statistical analysis of modelling results

- Temperature increase and precipitation change will impact crop yields and N losses!
- → We want to adress climate change impacts on N₂O fluxes from Austrian agricultural soils.
- → We want to find the main driving factors for N₂O losses now (2004-2014) and in near future (2030-2040).


scenarios (2030-2040)					
temperature	daily precipitation				
average	-20%	+20%	0%		
maximum	+20%	0%	-20%		
minimum	0%	-20%	+20%		

Strauss, F., Formayer, H. and Schmid, E. (2013). High resolution climate data for Austria in the period 2008-2040 from a statistical climate change model. International Journal of Climatology : DOI 10.1002/joc.3434

Outlook

- New regional N₂O emission factors will reflect Austrian heterogenic conditions.
- Identification of hot spots and hot moments of GHG emissions and NO₃⁻ leaching and pointing out mitigation options:
 - enables farmers to reduce N losses and still maintaining yields by an optimization of the agricultural management
 - and makes it possible to develop a policy framework for a climate friendly agricultural action program.

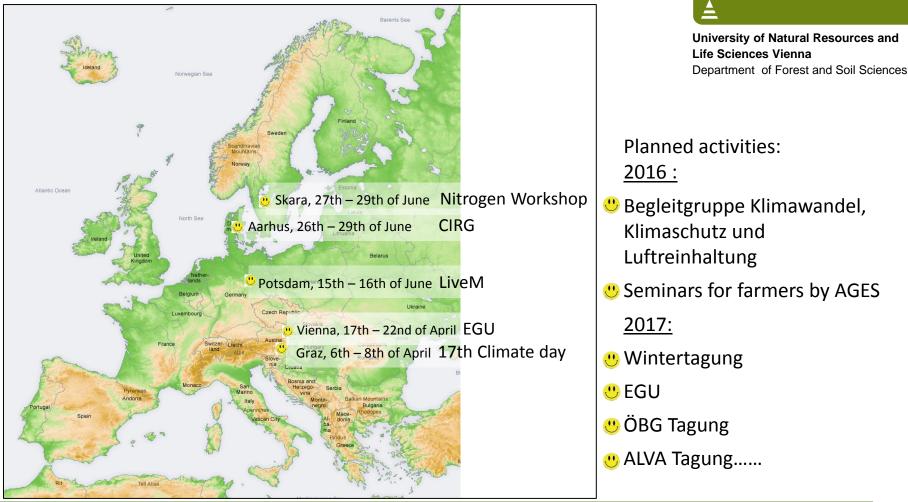
Dissemination

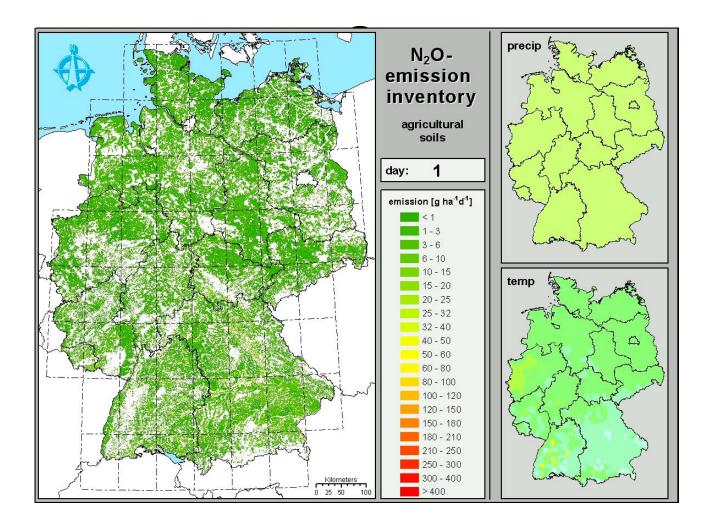
Publications:

Kasper, M. et al. (2016; to be submitted): "Calculating regional N_2O emissions from soils regarding region specific conditions with respect to crops and climate in selected regions in Austria"

In progress:

"Assessing the effects of management, soil type, and climate on N_2O emissions from Austrian agricultural soils"


"N₂O- emissions in different regions of arable crop production in Austria: Calculations according to IPCC emission factors vs. LDNDC model results."


"Current and future N losses from agricultural soil in Austria"

Dissemination

Scheduled conferences 2016:

Quelle: Christian Werner, IMK-FZK

Thank you for your attention!