

RESYS-TOOL

Ein Werkzeug zur Unterstützung der regionalen Energiewende

Projektteam:

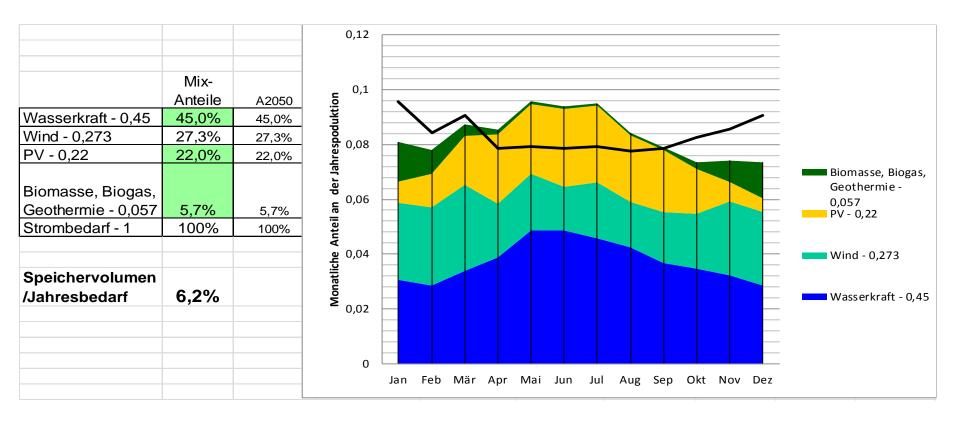
Günter Wind (Wind, Ingenieurbüro für Physik)

Horst Lunzer (Dr. Lunzer Energie & Umwelt e.U.)

Petra Busswald (akaryon OG)

Ernst Schriefl (ecoPolicy-Lab)

Thomas Lewis (energieautark GmbH)

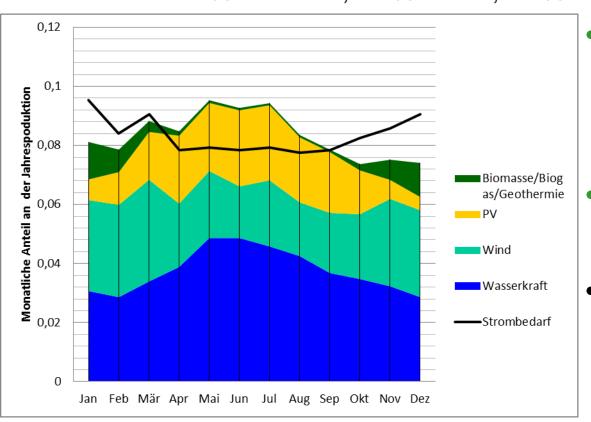


Ansbert Sturm (Energieagentur der Regionen)

Motivation

- Die Energiewende benötigt maßgeschneiderte Strategie-Tools für Energieberater und Entscheidungsträger
- para Derzeitige Tools erstellen meist Jahresbilanzen
 - → wichtige Aspekte müssen integriert werden:
 - Kurzzeitige und saisonale Verläufe von Energieangebot und Nachfrage
 - Speicherbedarf zum Ausgleich von Energieangebot und Nachfrage
 - Flächenbedarf zur Nahrungsmittelproduktion
 - Lokale Anforderungen für die Energiewende

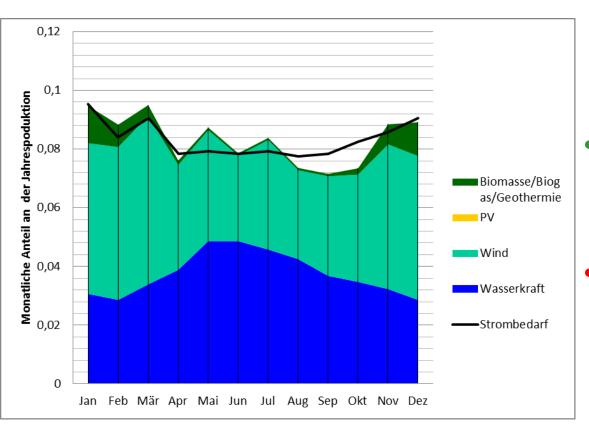
Energiemix & Saisonspeicherbedarf



Wie hängen die Energielücken mit dem Energiemix zusammen?

Test-Energiemix für Österreich

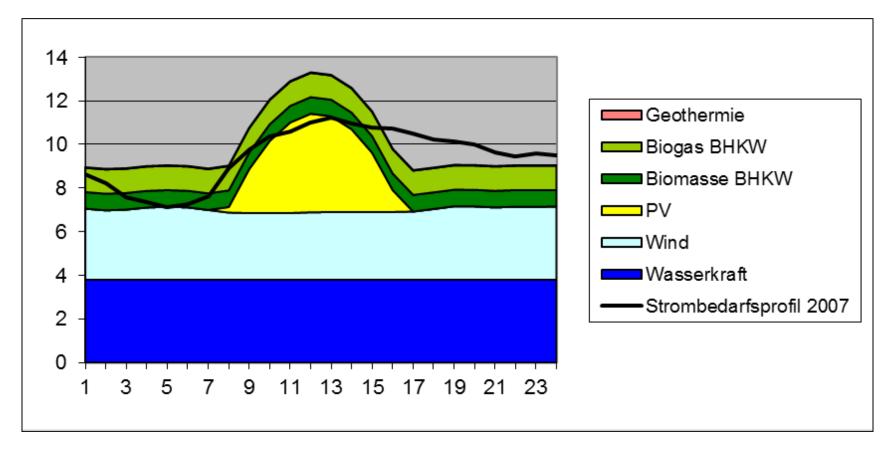
45% Wasser, 30% Wind, 20% Sonne, 5% Rest



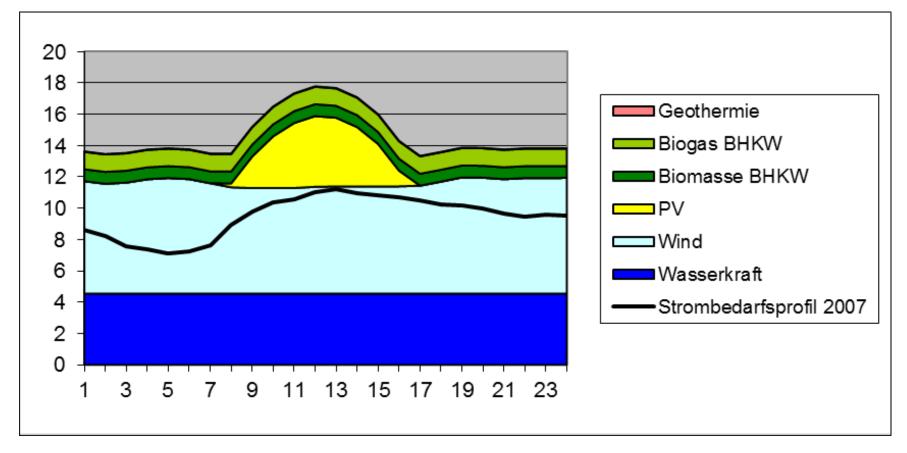
- Speicherbedarf
 mit vorhandener
 Speicherwasserkraft
 gerade noch bewältigbar,
 Biomasse = Winterenergie)
- Nutzung versiegelter und minderwertiger Flächen durch Photovoltaik
- Windkraftausbau laut <u>www.windatlas</u> machbar mit Abstandregelung

Mehr Photovoltaik führt zu höherem Speicherbedarf bzw. zu saisonalen Importen und Exporten!

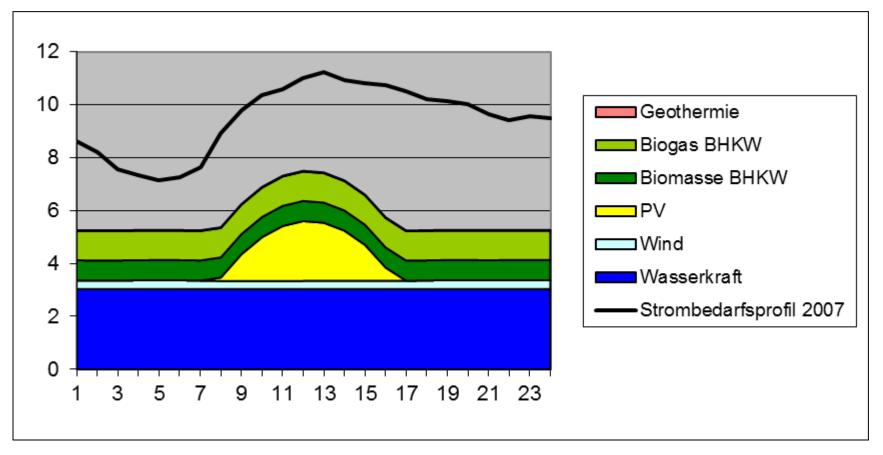
Test-Energiemix für Österreich:


45% Wasser, 50% Wind, 0% Sonne, 5% Rest

- Geringer Speicherbedarf mit vorhandener Speicherwasserkraft zu bewältigen
- Zu hoher Windkraftanteil ca. 17-fach von 2010.
 Große Akzeptanzprobleme!

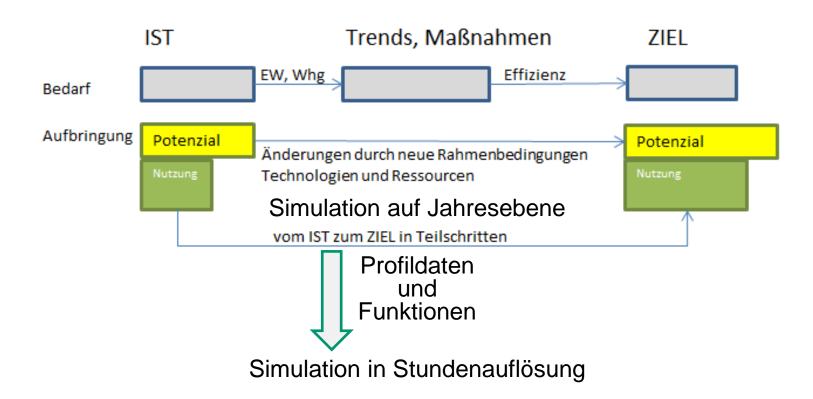

Tagesprofil Energieversorgung (1)

Durchschnittlicher Jännertag


Tagesprofil Energieversorgung (2)

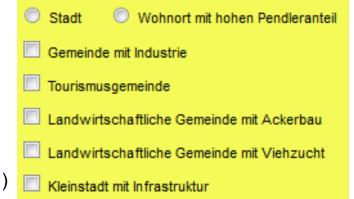
Energiereicher Jännertag

Tagesprofil Energieversorgung (3)


Energiearmer Jännertag

RESYS-Tool – Strategietool für die Energiewende

- Ein webbasiertes Tool Zielgruppen:
 - EnergieberaterInnen für Gemeinden, Regionen
 - Entscheidungsträger
- Berücksichtigung der regionalen Struktur
 - IST-Bedarf, Potenziale
 - Zielsetzung für Energiebedarfsreduktion und Potentialnutzung
- Entwicklungsphase:
 - Start: 2011
 - Projektende: Ende 2013



Modell-Prinzip

Bedarfssimulation

- 1. Basis-Eingaben → Typbestimmung → Vorgabewerte für weitere Simulationen
- 2. Eingaben plus Vorgabewerte (modifzierbar)
 - → Bedarf sektoral (Wohnen, Gewerbe+Industrie, Gemeinde/Infrastruktur, Mobilität)
- 3. Statistik-Austria →
 Transfer auf **technische Nutzungsbereiche**(Wärme bis 100°C, Raumheizung, Warmwasser, Prozesswärme, ...)

Gemeindetypologien, Schlüssel zur Bedarfssimulation

Typen / Einstufung

Stadt

Gemeinde mit Industrie

Tourismusgemeinde

landwirtschaftliche Gemeinde Ackerbau

landwirtschaftliche Gemeinde Viehzucht

Kleinstadt mit Infrastruktur

Wohngemeinde mit hohem PendlerInnen-Aufkommen

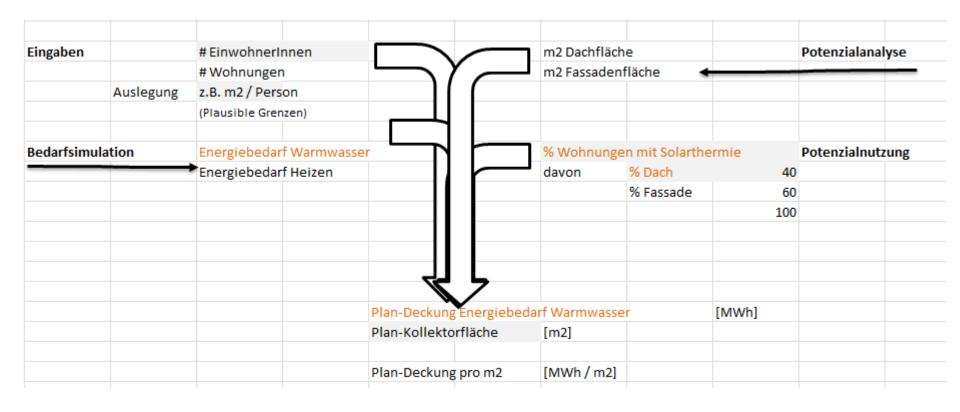
Typisierungs-Algorithmus auf Basis von 82 Gemeinden (Daten aus CO2-Grobbilanz) plus 86 Gemeinden aus KEM-Regionen

Einflussparameter

Einwohner

Beschäftigte / Einwohner

Gästebetten / EW


Landwirtschaftliche Fläche / Gemeindefläche

Großvieheinheiten / EW

Strombedarf Infrastruktur

Aufbringungs-Seite – Bsp. Solarthermie

Aufbringungs-Seite

Für alle erneuerbaren Energieträger:

- 1. Modell für theoretisches Potenzial
- 2. Modell für Abbildung Ist- bzw. geplante-Nutzung

RESYS-Tool: dynamische Profile

Synthetische Ermittlung der Profile:

- Klimadaten (Referenzwetterdatensätze) für Wärmebedarf, Kühlbedarf, Wind-, Solarenergie,
- Messdaten bzw. Ertragsdaten
 z.B. Wasserkraft, Windenergie, sektoraler Strombedarf
- Standardisierte Profile (Allgemeinstrombedarf, Warmwasserbedarf, ...) abhängig von Sektoren

Methodik:

- Simulationen für Photovoltaik, Solarthermie, Windenergie, Wärmepumpen
- Gebäudesimulation
- Beleuchtungssimulation
- Simulation Kühlanlagen, Klimaanlagen

Ergebnisse Energiebilanzierung

Ergebnisse der Energiebilanzierungen (IST und Plan):

- Wärmebilanzen:
 - Raumwärme + Warmwasser
 - Prozesswärme NT
 - Prozesswärme HT
- Strombilanz
- Speicherbedarf Ausgleichsenergie
 - Lokal
 - Energieaustausch über die Region hinaus
 - Vergleich mit Österreich-Situation

- Energieträgerbilanzen
 - Treibstoffe biogen bzw. BTL
 - Biomasse fest
 - Biogassubstrat
 - Biogas
 - Fossilenergie
 - Fossile Treibstoffe

Abgebildete/berechnete Wechselwirkungen I

Die Simulations-Profilfunktionen bilden zahlreiche Wechselwirkungen ab:

- Einfluss des Dämmstands der Gebäude auf den Verlauf und Dauer des Raumwärmebedarfs
- Heizungsbeiträge von Solarthermie Dämmzustand der Gebäude, sowie der spezifischen Nutzenergieerträge
- Nutzenergieerträge von Solarthermie Anlagengröße bzw.
 Potenzialausbau
- Wärmegeführte/stromgeführte Betriebsweise von BHKW, BTL Volllaststunden und Rohstoffausnutzung

Abgebildete/berechnete Wechselwirkungen II

- Fernwärmeausbau zusätzliche Verlustwärme: ermöglicht Vergleich dezentraler und zentraler Technologien
- Verminderung von Volllaststundenzahlen von Spitzenbedarfsdeckung durch Einsatz von Solarthermieanlagen, bivalente Wärmepumpen, Grundlast-BHKWs
- Stromverbrauchszunahme durch zusätzliche Energierzeugungsanlagen (Heizkessel, Wärmepumpen, Biogas, BTL-Anlagen)
- Ausgleichsenergiebedarf Energiemix

Abgebildete/berechnete Wechselwirkungen III

 Abhängigkeit des spezifischen Anlagenertrags von der Intensität der Potenzialnutzung (Photovoltaik, Wind)

<u>Spätere Versionen – RESYS-City</u> – gefördert von ZIT Stadt Wien:

- Einflüsse von Energiespeicher der E-Fahrzeuge
- Verbraucherbeeinflussung durch smart metering
- Mit realen Wetterdatensätzen können Synergieeffekte verschiedener Energiequellen (z.B. Photovoltaik – Wind – Wasserkraft) untersucht werden … zukünftiges Projekt

Benchmarking

Regionale Energieautarkie ist NICHT das nachhaltige Ziel:

Nachhaltiges Ziel: z.B. dünn besiedelte Regionen mit wenig Industrie müssen die Ballungsräume mitversorgen.

Orientierung am Referenzszenario für energieautarkes Österreich:

- Erforderliche Intensität der Reduktionsmaßnahmen (Wärme, Treibstoff, ...)
- Erforderliche Nutzung der einzelnen Potenziale (Orientierung am Energiemix)
- Erforderlicher Speicherbedarf
- Flächenbedarf für Nahrungsmittelproduktion

Ziel des Benchmarkings: Die Summe aller Regionen Österreichs soll das funktionierende Referenzszenario ergeben.

Kosten für zukünftige Energieversorgung

Kosten für Maßnahmen und Ausbau:

- Typische Kosten für Reduktionsmaßnahmen (erst in späteren Ausbau)
- Kosten für Ausbau regenerativer Energien
 - Typische Anlagenkosten abhängig von Anlagengröße, ...

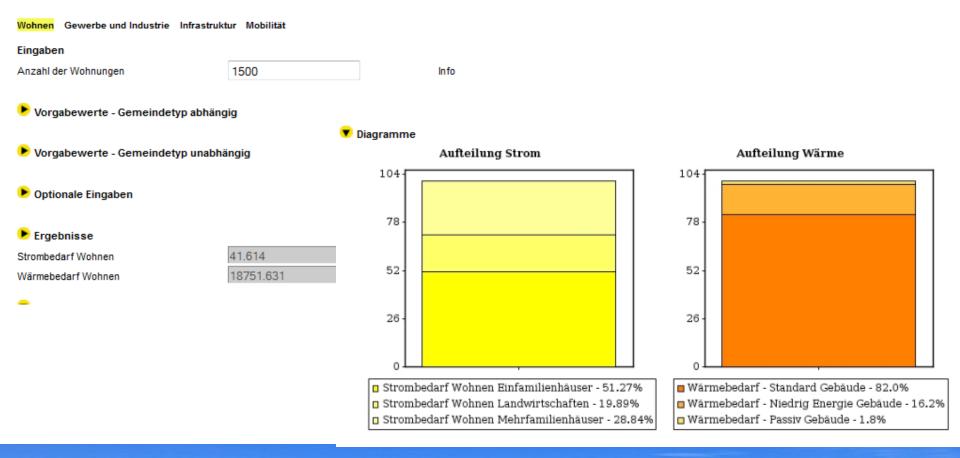
- 1. Typbestimmung 1 Seite wenige Eingaben → Typ
- 2. Ist-Energiebedarf 10-15 Eingaben / 10 Seiten → Energiebedarf
- 3. Ist-Aufbringung 1-3 Eingaben pro Energieträger (Wasser, Wind, Solar, Wärmepumpe, Biomasse), Vergleich Potenziale
- 4. Ist-Analyse Sektoren → Nutzungsbereiche, Energieträger-Verteilung, Verläufe in Stundenauflösung
- 5. Zielplanung Trends, Effizienzmaßnahmen, Potenzialnutzung
- 6. Ergebnisse Jahresanalyse, Benchmarks, Kosten, Verläufe

1 Typbestimmung

Daten zur Typbestimmung

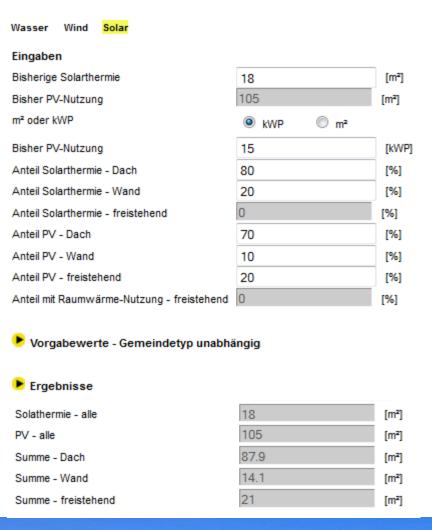
Eingaben

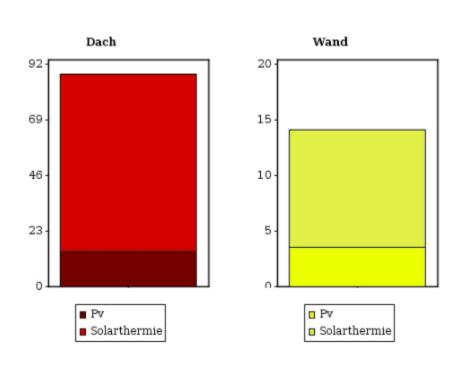
Einwohner der Gemeinde/Region	5000	
Gästebetten	20	
Katasterfläche	1200	[ha]
davon landwirtschaftliche Nutzfläche	200	[ha]
davon Weingärten und Obstplantagen	20	[ha]
davon Wald	300	[ha]
davon Baufläche	40	[ha]
Windkraftausschließungszonen	0	[%]
Viehbestand	20	[GVE]
Strombedarf Gemeindeobjekte	1000	[MWh/a]
Land- und Forstwirtschaft	100	[Beschäftigte]
Fischerei und Fischzucht	5	[Beschäftigte]
Bergbau und Gewinnung von Steinen u.	10	[Beschäftigte]
Erden		
Sachgütererzeugung	50	[Beschäftigte]
Energie- und Wasserversorgung	25	[Beschäftigte]
Bauwesen	50	[Beschäftigte]
Handel; Reparatur v. Kfz u. Gebrauchsgütern	30	[Beschäftigte]
Beherbergungs- und Gaststättenwesen	20	[Beschäftigte]
Verkehr und Nachrichtenübermittlung	10	[Beschäftigte]
Kredit- und Versicherungswesen	10	[Beschäftigte]
Realitätenwesen Unternehmensdienstl.	10	[Beschäftigte]


	10	[1
Realitätenwesen Unternehmensdienstl.	10	[Beschäftigte]
Öffentl. Verwaltung	1022	[Beschäftigte]
Sozialversicherung/Unterrichtswesen		
Gesundheits- Veterinär und Sozialwesen	10	[Beschäftigte]
Erbring. v. sonst. öffentl. u. pers. Dienstl.	100	[Beschäftigte]

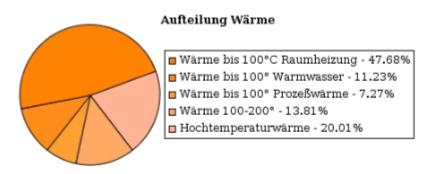
Typ: [Kleinstadt mit Infrastruktur]

automatisch manuell	
O Stadt O Wohnort mit hohen Pendleranteil	Sonstiges
Gemeinde mit Industrie	
Tourismusgemeinde	
Landwirtschaftliche Gemeinde mit Ackerbau	
Landwirtschaftliche Gemeinde mit Viehzucht	
✓ Kleinstadt mit Infrastruktur	



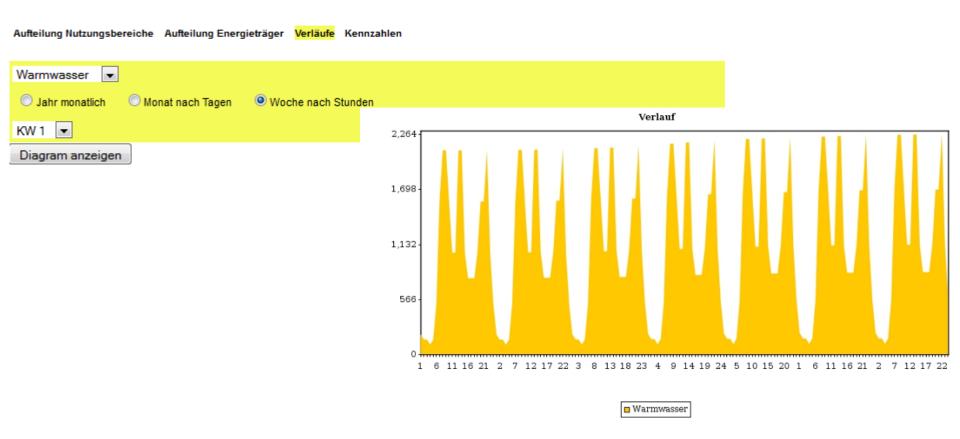

2 Energiebedarf

3 Ist-Aufbringung



4 Ist-Analyse Nutzungsbereiche

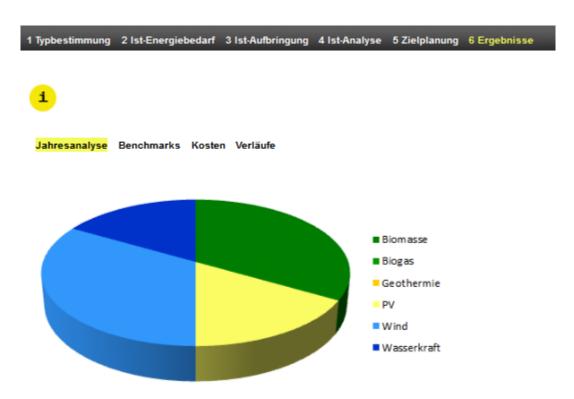
Aufteilung Nutzungsbereiche Aufteilung Energieträger Verläufe Kennzahlen


Wärme bis 100°C Raumheizung	46603.613	MWh
Wärme bis 100° Warmwasser	10975.145	MWh
Wärme bis 100° Prozeßwärme	7108.344	MWh
Wärme 100-200°	13498.455	MWh
Hochtemperaturwärme	19557.313	MWh
Wärme-Summe	97742.87	MWh
Klimatisierung	19774.828	MWh
Kühlung	24135.554	MWh
Strom Bedarf Haushalt, Kochen, Kühlen,	21051.756	MWh
Sonstiges		
Strom Licht, EDV	46309.56	MWh
Strom Elektrochemie	4.54	MWh
Strom Standmotore	6127.479	MWh
Strom-Summe	117403.718	MWh
Mobilität, Traktion	85736326.325	MWh

4 Ist-Analyse Verläufe

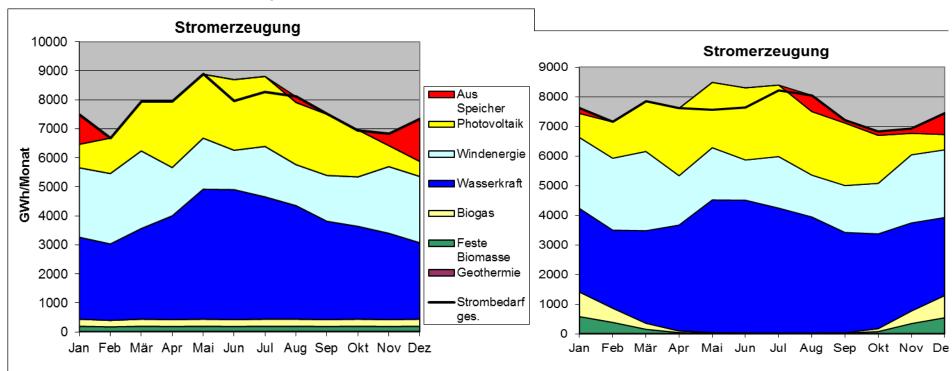
5 Zielplanung Trends, Effzienzmaßnahmen

Trends Effizienzmaßnahm	<mark>en</mark> Aufbringungs-F	lanung			
Kühlung					
Effizienz:verbesserung	0		0	[%]	Effizienz kann durch Temperaturanpassung, Dämmung der Kühlräume, Drehzahlregelung, Optimierung der Anlagen und Steuerung ,erreicht werden
durchschnittlicher Energiebedarf für Kühlung bisher	90440.491		90440.491	[MWh]	Möglicherweise muß Nutzenergie (Kälte) eingespart werden (Bereiche nicht mehr wie zu bisher gewählten Temperaturen oder Zeiten gekühlt).
Strombedarf Haushalt, I	Kochen, Kühlen, S	onstig			
Effizienz:verbesserung	0		0	[%]	Effizienz kann durch vielfältige Maßnahmen, etwa effizientere Geräte, bewußteres Nutzerverhalten, erreicht werden
durchschnittlicher Energiebedarf für Bereich bisher	72342.466		72342.466	[MWh]	Wird schwierig Potential auszuschöpfen.
Stromlicht, EDV					
Effizienzverbesserung	0		62	[%]	Effizienz kann durch Energiesparlampen, LED-Lampen, Spiegel und helle Räume, Vorschaltgeräte, Nutzungsoptimierungen erreicht werden



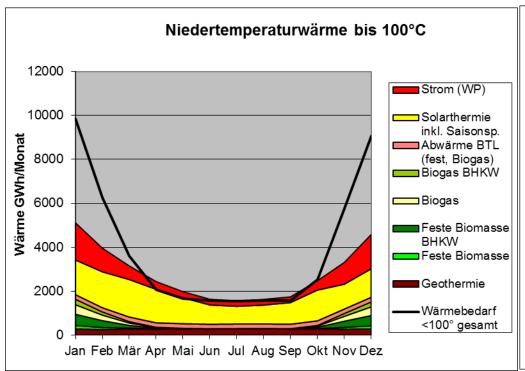
5 Zielplanung Aufbringungs-Planung

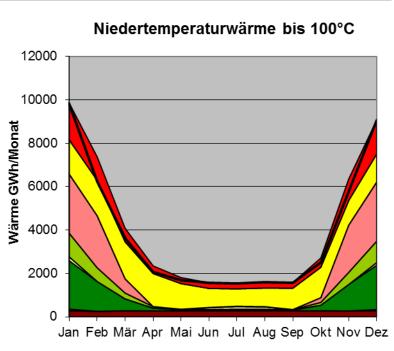
Trends Effizienzmaßnahmen	Aufbringungs-P	lanung			
Wasser					
Potentialnutzung		66	[%]	la fata de	
	Energieertrag	830	[MWh]	Infotext	
Wind					
Potentialnutzung		64	[%]	Infotext	
	Energieertrag	1640	[MWh]	motext	
Photovoltaik					
Potentialnutzung		51	[%]	Infotext	
	Energieertrag	2265	[MWh]	motext	
Energiebedarf					
Planung Aufbringung erneue	erbar				


6 Ergebnisse

Aufbringung: nur 30% des Potenzials ausgeschöpft.

Beispiel: Österreich-Biomassenutzungsstrategie Ganzjahresbetrieb versus Winterbetrieb




Ganzjahresbetrieb von BHKW, BTL:

Biomasse, Biogas nur im Winter:

Saisonal genützte Biomasse ist wichtigster "Solarenergiespeicher"

Beispiel: Österreich Biomassenutzungsstrategie

Ganzjahresbetrieb von BHKW, BTL:

Großes Wärmedefizit im Winter

→ Energieimporte – woher???

Biomasse, Biogas nur im Winter: sogar leichte Reserven

"...erst die Verlaufsberechnung macht sicher!"

RESYS-Tool

Herzlichen Dank für Ihr Interesse

Bis bald ...

...unsere Gedanken werden uns bei der Benutzung des RESYS-Tools wiederfinden...