We found a way to improve novel

catalysts for utilizing CO₂ and CH₄

Impact of nanoparticle exsolution on dry reforming of methane: Improving catalytic activity by reductive pre-treatment of perovskite-type catalysts

F. Schrenk^{1,2}, L. Lindenthal^{1,2}, H. Drexler^{1,2}, G. Urban², R. Rameshan^{1,2}, H. Summerer³, T. Berger^{1,2}, T. Ruh^{1,2}, A. K. Opitz³, C. Rameshan^{1,2}

¹Chair of Physical Chemistry, Montanuniversität Leoben, Leoben, Austria

²Institute for Materials Chemistry, TU Wien, Wien, Austria

³Institute for Chemical Technologies and Analytics, TU Wien. Wien. Austria

Introduction

Perovskite-type catalysts proved to be effective towards the **utilization of CO**₂ and other greenhouse gases.

These materials achieve this by forming stable nanoparticles on their surface in a process known as **exsolution**.

In this study a perovskite-type catalyst was developed with a rational design approach and tested for Dry Reforming of Methane, which converts two potent greenhouse gases into the basic building block of the chemical industry.

Improvement of the catalyst

$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$

Design of the catalyst

Investigation of the catalyst

Several techniques were used to characterize the behavior of the catalyst **during the reaction**.

Perovskite-type catalysts can be utilized for dry reforming of methane.

õ

A rational design approach can be used to tailor the materials to the reaction.

Conclusions

A reductive pretreatment leads to an additional increase in catalytic activity.

The materials show a mechanistic switch with increasing temperature.

Take a picture to find out how we devolved new catalysts for Methane Dry Reforming

