Imp_DroP

Impact of longer Drought Periods on Climate in Greater Vienna: appropriate Mitigation measures

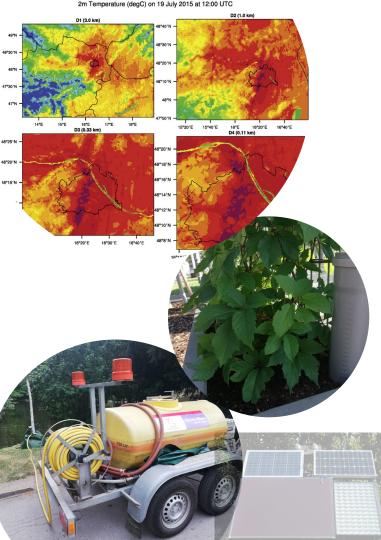
ACRP 13th call, KR20AC0K18165 Applicant: BOKU_Met (Radiation, Climate, Agro) Partners: BOKU_IVET, BOKU_IBLB, MA22, Subcontractors: Météo-France, Gartenbauschule Schönbrunn, IIASA

3 GOOD HEALTH AND WELL-BEING

11 SUSTAINABLE CITIES AND COMMUNITIES

Klimatag 2023_05 CL.18 12/4/2023

1 Drought in Vienna


2 Lysimeter

3 Energy flow

4 Models

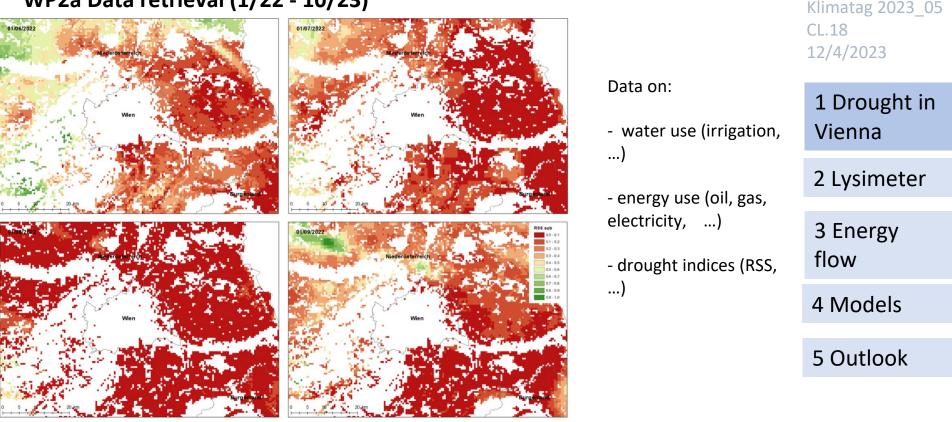
5 Outlook

- (1) Thermal stress in urban areas is a growing problem during heat and drought episodes.
- (2) Agricultural surroundings cannot provide daytime cooling effects during heat waves.
- (3) Mitigation efforts focusing on use of vegetation rely on water.
- (4) Local energy production using PV can reduce anthropogenic heat flux.

RQ1: What potential have vegetation surfaces to cool via evapotranspiration during drought periods from urban green areas, green roofs and surrounding (irrigated) agricultural areas / crop management changes

RQ2: How much heat release can be prevented by technological change within urban canyons. (HVAC, combustion engines,...). Klimatag 2023_05 CL.18 12/4/2023

1 Drought in Vienna

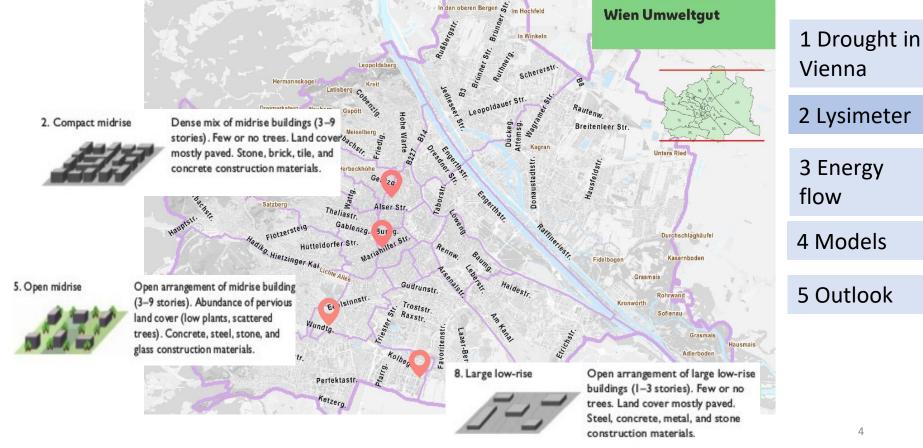

2 Lysimeter

3 Energy flow

4 Models

5 Outlook

WP2a Data retrieval (1/22 - 10/23)



Monthly values of relative soil saturation of crop available water (RSS) of the surrounding agricultural areas of Vienna for the period between 1st of June 2022 until 1st of September 2022 (example)

WP2b Experimental investigations (1/22 - 10/23)

Klimatag 2023_05 CL.18 12/4/2023

Locations of the experimental sites

scientific name	german name	habit	frost resistent	habitat demands	soil demands
Sedum album 'Coral Carpet'	Mauerpfeffer	flat, wide	hardy	sunny	permable, gravelly
Sedum spurium 'Purpurteppich'	Mauerpfeffer	dense, wide	hardy	sunny	permable, gravelly
Sedum hybridum ´lmmergrünchen´	Mauerpfeffer	dense, wide	hardy	sunny	permable, gravelly
Sedum acre	Mauerpfeffer	flat, wide	hardy	sunny	permable, gravelly

1207

1 Drought in Vienna

2 Lysimeter

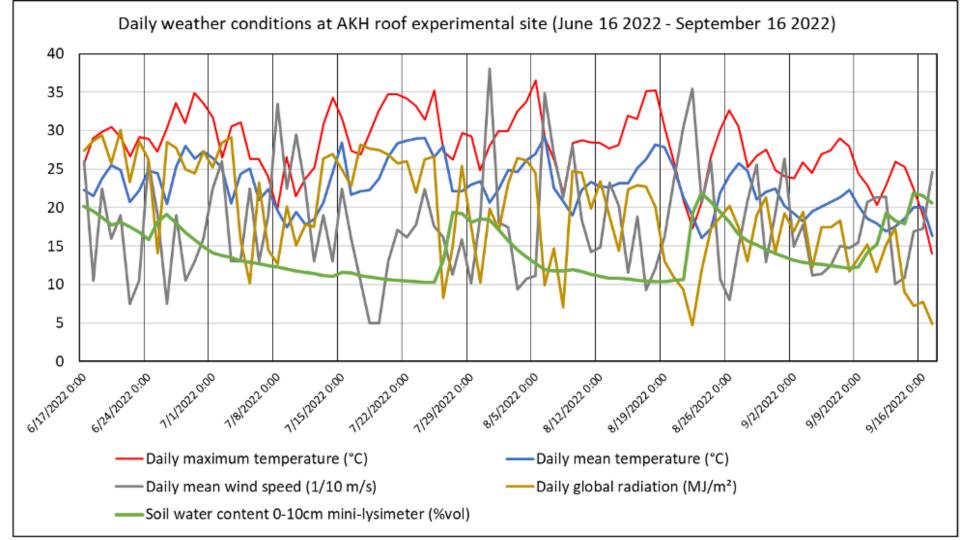
3 Energy flow

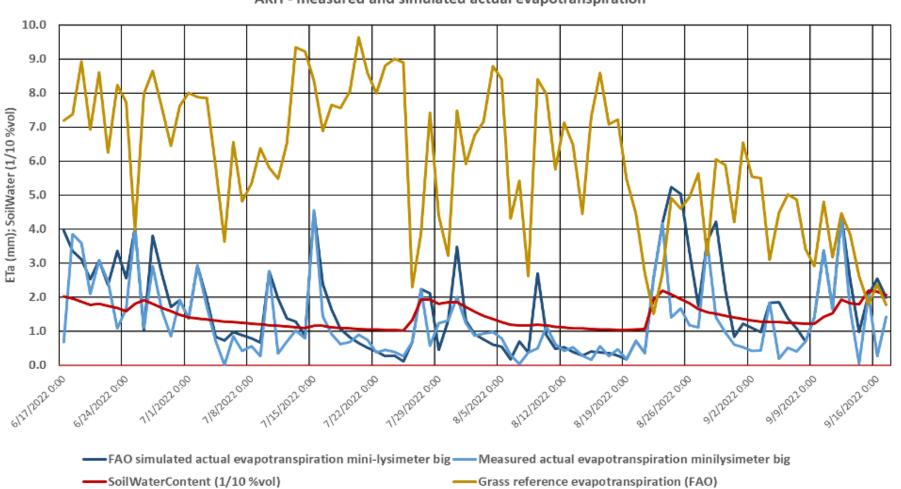
4 Models

5 Outlook

5

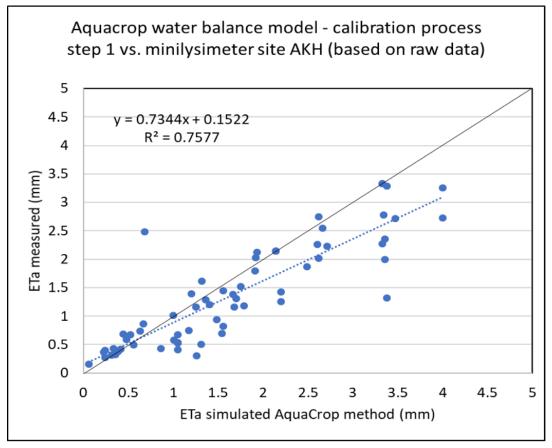
Continuous measurements (since 2022/05)

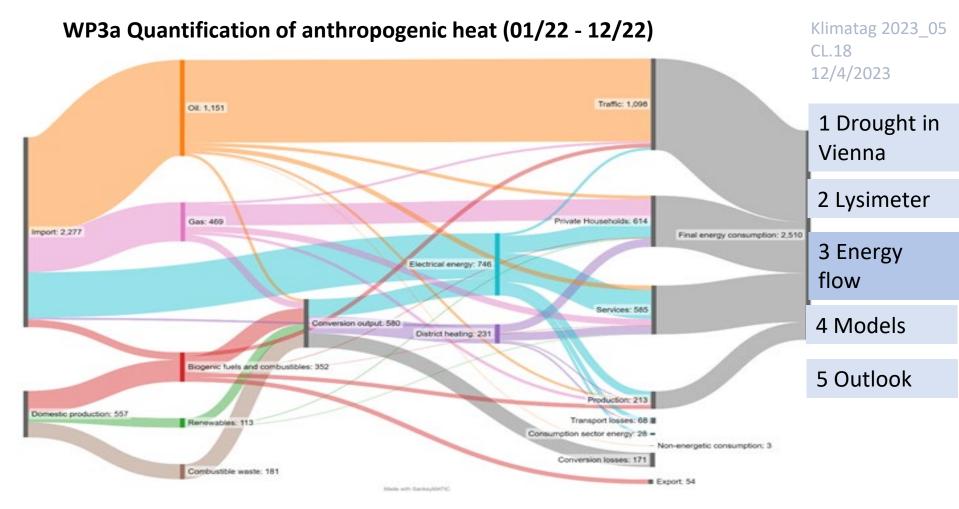



Klimatag 2023_05 CL.18 12/4/2023

1 Drought in Vienna

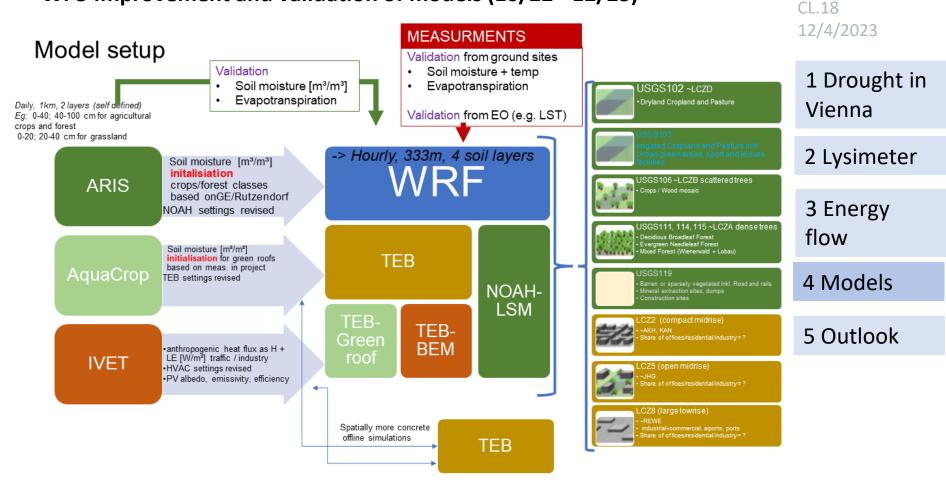
2 Lysimeter


Measured parameter	Name of sensors (Company)	Height		3 Energy flow
Air temperature / relative humidity /atmospheric pressure	Atmos 14 (Meter)	1.5 m	at all stations	4 Models
Wind speed	DS2 Sonic anemometer (Decagon)	1.5 m	at all stations	
Soil humidity + soil temperature	ECH20 EC-5*, *** (Meter) Hydra Probe II** (Stevens) Decagon soil temp***	5 cm* , *** 20 cm depth**	 *in all EXT pots ** in all INT pots *** green roofs sites 	5 Outlook
Long wave radiation emitted from vegetation	Infrared Radiometer SI-100 (Apogee Instruments)	40 cm above surface	On setup at JHS	
Weight of pot	Lysimeter using weighting cell PW10A		all pots	6



AKH - measured and simulated actual evapotranspiration

WP3b Modelling of evaporative cooling potentials (01/22 - 12/23)

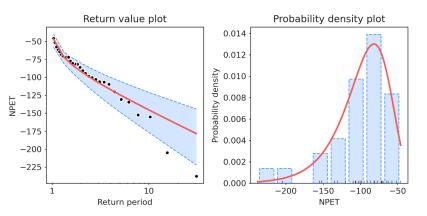


Comparison of 3-day average actual evapotranspiration measured by mini lysimeter vs. simulated by Aquacrop method (uncalibrated)

Sankey flow chart for Vienna for August 2015 in GWh

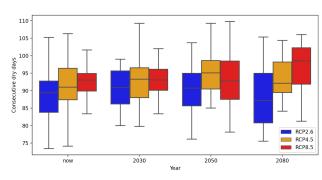
WP5 Improvement and validation of models (10/22 - 12/23)

Klimatag 2023 05


WP4 Definition and preparation of scenarios

and input parameters (10/22 - 12/23)

Selection criteria for meteorological data


- Goal: Find periods with heat and dry conditions
- Approach: using the cumulative water balance (NPET = PET-Precipitation) and climatologically extreme heat waves

Wien Hohe Warte cumulative water balance 1991-2020 (Gumbel)

Climate change signal of consecutive dry days from ÖKS15 models for near-time (2030), mid-century (2050) and end od century (2080) projections

- NPET not exceeding 5 mm
- 80% quantile of the maximum temperature
- 2 years return period
- based on ÖKS15
- climate scenarios RCP2.6, 4.5 and RCP8.5

Klimatag 2023_05 CL.18 12/4/2023

> 1 Drought in Vienna

2 Lysimeter

3 Energy flow

4 Models

5 Outlook

Climate change signal of consecutive dry days from ÖKS15 models for near-time (2030), mid-century (2050) and end of century (2080) projections

Summary:

- Established in-situ experimental measurements
- Quantification of anthropogenic heat for each pixel as a function of anthropogenic heat sources for different seasons of the year and future development scenarios
- □ Validated evaporative cooling effects
- First model results
- Climate scenarios defined
- □ List of Stakeholders prepared

Outlook:

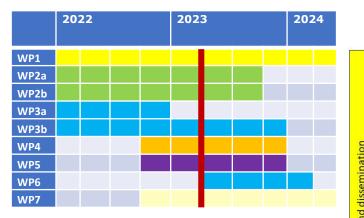
- Boundary conditions: available energy during drought period
 - Water for evaporative cooling
 - □ Imported and domestic energy producing waste heat
- Definition of present and future urban parameters and settings
- Update vegetation and soil parameters for region

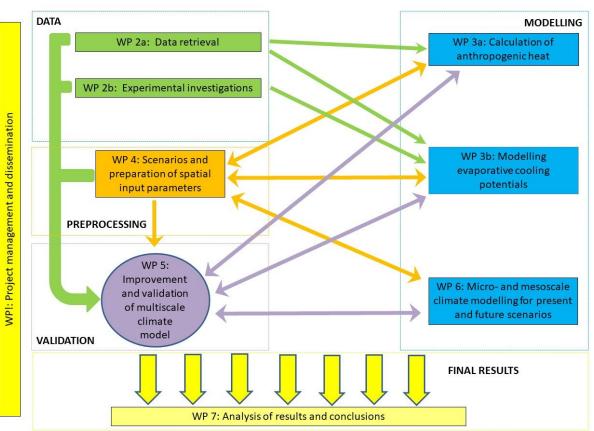
WP5 Improvement and validation of models (10/22 - 12/23)

WP6 Micro and mesoscale climate modelling for present and future scenario (4/23 – 3/24) WP7 Analysis of results and conclusions for scientists and policy makers (10/22 - 6/24)

Klimatag 2023_05 CL.18 12/4/2023

1 Drought in Vienna


2 Lysimeter


3 Energy flow

4 Models

5 Outlook

Thank you for your attention!

Μ	WP	Date	Name of Milestone	completed 🗸	partly completed 🗸	
1.1	1	01/22	Kick-off meeting			\checkmark
2b.1	2	3/22	Established in-situ experimental measure	ements		\checkmark
3a.1+2	3	12/22	Quantification of anthropogenic heat for the year and future development scenar	•	genic heat sources for different seasons of	\checkmark
3b.1	3	12/22	Validated evaporative cooling effects			\checkmark
4.1,4,5	4	12/22	Meteorological fields for model evaluation future prepared	on prepared, Model input parameter	s for simulations of present, past and	\checkmark
1.3	1	01/23	Interim report year 1			\checkmark
4.2	4	3/23	Meteorological fields for historical heat	waves prepared		\checkmark
1.2	1	04/23	Presentation at Scientific meeting (Klima	itag)		\checkmark
4.4	4	06/23	Meteorological fields for future heat way	ve prepared		~
5.1	5	07/23	Improvement implemented in TEB			~
5.2	5	09/23	Improvement implemented in WRF-TEB			\checkmark

Μ	WP	Date	Name of Milestone	
2a.2	2	9/23	Overview of collected data	
2b.2	2	9/23	Overview of collected measurement data	
3b.2-4	3	9/23	Calibrated dynamic soil-plant growth model, SWC, quantification of irrigation need	
5.3	5	12/23	Validation of WRF-TEB done	
1.3	1	01/24	Interim report (year 2)	
6.1	6	03/24	Modelling with TEB-WRF	
1.5	1	3/24	Meeting with stakeholders	\sim
7.1,2,4-6	7	6/24	Analysis of sensitivity study for local scale and scenarios, Maps of Evapotranspiration and Irrigation Needs, Vegetation cooling potential, Thermal Comfort	
7.3	7	6/24	Maps of Anthropogenic heat	
1.3+7.7	1, 7	6/24	Final recommendations and final reports	
1.4	1	6/24	International publication	
			4.10.2022 Imp_DroP Project Meeting	17