Rainfall erosivity assessment in Austria

Institut für Bodenphysik Wasserwirtschaft

ZERO

2 ZERO HUNGER

Cristina Vásquez¹, Andreas Klik¹, Christine Stumpp¹, Peter Strauß², Nur Banu Özcelik³, Gregor Laaha³, Georg Pistotnik⁴, Shuiqing Yin⁵, Tomas Dostal⁶, **Stefan Strohmeier^{1*}**

¹University of Natural Resources and Life Sciences, Institute for Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna ²Federal Agency for Water Management Institute for Land and Water Management Research, Petzenkirchen, Austria

³University of Natural Resources and Life Sciences, Institute of Applied Statistics, Vienna, Austria

⁴Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

⁵School of Geography, Beijing Normal University, Beijing, China

⁶Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic

cristina.vasquez-ojeda@boku.ac.at

15 LIFE ON LAND

Background

Results

Soil erosion by water generates a significant threat to soil health and agricultural productivity. In many cases, a few extreme rainfall events dominate the long-term soil erosion pattern.

Knowledge of the occurrence of extreme rainfall events in space and time enables the implementation of locally adapted Sustainable Land Management (SLM) practices.

Objective

Assessment of selected rainfall erosivity characteristics across Austrian agricultural production zones using long-term and high-resolution rainfall records.

Data and methods

27 selected weather stations:

Precipitation: 5 min. temporal resolution.

Fig. 2. a) El₃₀, ED, and rainfall characteristics, b) Intra-annual distribution, and c) exceedance probability curves represented by three dominant clusters.

- Snow (cm): daily data.
- Temperature (°C): daily data.
- Data period: min. 27 and max. 78 years.

Fig. 1. Rainfall stations across Austria within dominant Agricultural Production Zones. Alpenostrand: AOR, Alpenvorland: AVL, Kärntner Becken: KB, Nö. Flach- und Hugelland: NFH, Sö. Flach- und Hügelland: SFH, Voralpen: VA, Wald- und Mühlviertel: WM.

Fig. 3. Spatial distribution of erosive events within dominant Agricultural Production Zones.

Fig. 4. Huff curves per cluster showing

Dimensionless duration (%)

Fig. 5. Generalized Extreme Value (GEV)

Return Period

distribution applied for long-term rainfall records of Petzenkirchen, Lower Austria.

1. Features

K-means algorithm features

2. Standarization of 3. Number of clusters $e_r = 0.28 \left[1 - 0.52_{exp} \left(-0.042i_r \right) \right]$

Input

1. Rainfall amount 2. Event duration and 3. Max. 30-min intensity

1. Events selection

Huff curves (pointdeveloped)

2. Cumulative-Dimensionless depth and duration

3. Frequency distributions 10%, 50%, and 90% were used

the temporal distribution within a storm.

Conclusions

- Clustering of rainfall events, based on selected rainfall erosivity characteristics, identified three major erosive rainfall types (clusters) across Austria's main agricultural production zones.
- Temporal distribution analyses identified a predominant erosive event type (C1) that occurs during the summer months from June to August.
- Erosive rainfalls with the highest impact (higher intensity and short time duration, cluster 1) show a spatially pronounced occurrence in the southeastern pre-alpine areas.

Acknowledgments

We like to thank for the financial support received from the Klima- und Energiefonds ACRP 13th Call.