Rainfall erosivity assessment in Austria

Cristina Vásquez¹, Andreas Klik², Christine Stumpf³, Peter Strauß², Nur Banu Özcelik³, Gregor Laaha³, Georg Pistotnik⁴, Shuqing Yin⁵, Tomas Dostál⁶, Stefan Strohmeyer⁷

¹University of Natural Resources and Life Sciences, Institute for Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna
²Federal Agency for Water Management Institute for Land and Water Management Research, Petzenkirchen, Austria
³University of Natural Resources and Life Sciences, Institute of Applied Statistics, Vienna, Austria
⁴School of Geography, Beijing Normal University, Beijing, China
⁵Federal Agency for Water Management Institute for Land and Water Management Research, Petzenkirchen, Austria
⁶Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic

1. Background

Soil erosion by water generates a significant threat to soil health and agricultural productivity. In many cases, a few extreme rainfall events dominate the long-term soil erosion pattern. Knowledge of the occurrence of extreme rainfall events in space and time enables the implementation of locally adapted Sustainable Land Management (SLM) practices.

2. Objective

- Assessment of selected rainfall erosivity characteristics across Austrian agricultural production zones using long-term and high-resolution rainfall records.

3. Data and methods

Data

- 27 selected weather stations:
 - Precipitation: 5 min. temporal resolution.
 - Snow (cm): daily data.
 - Temperature (°C): daily data.
 - Data period: min. 27 and max. 78 years.

Methods

- E*130 each event
 - Kinetic energy (E)
 - Maximum 30-min intensity (I30)

R-Factor Calculation

1. Rainfall erosivity (E130)
2. Erosive event duration (h)
3. Rainfall amount (P mm)
4. Erosivity density (ED) E130/P

K-means algorithm

1. Features
2. Standardization of features
3. Number of clusters

Huff curves (point-developed)

1. Events selection
2. Cumulative-Dimensionless depth and duration
3. Frequency distributions 10%, 50%, and 90% were used

Results

Fig. 2. a) E130, ED, and rainfall characteristics, b) intra-annual distribution, and c) exceedance probability curves represented by three dominant clusters.

Fig. 3. Spatial distribution of erosive events within dominant Agricultural Production Zones.

Fig. 4. Huff curves per cluster showing the temporal distribution within a storm.

Fig. 5. Generalized Extreme Value (GEV) distribution applied for long-term rainfall records of Petzenkirchen, Lower Austria.

Conclusions

- Clustering of rainfall events, based on selected rainfall erosivity characteristics, identified three major erosive rainfall types (clusters) across Austria’s main agricultural production zones.
- Temporal distribution analyses identified a predominant erosive event type (C1) that occurs during the summer months from June to August.
- Erosive rainfalls with the highest impact (higher intensity and short time duration, cluster 1) show a spatially pronounced occurrence in the southeastern pre-alpine areas.

Acknowledgments

We like to thank for the financial support received from the Klima-energiefonds ACRP 13th Call.